作者:接地气的陈老师
来源:接地气学堂
总有做数据的新人抱怨,做的分析被挑刺,嫌弃考虑不全面,不深入。到底该咋做?今天直接上案例,开搞!
问题场景:
某视频网站以包月会员形式收费,现了解到同行都准备涨价,准备一起涨。涨价以后要求数据分析师评估涨价效果,你是该公司的数据分析师,你会怎么评估?
1 最基础的涨价模型
收入=总用户数*购买率*人均金额。这条公式大家都知道。那么问题是:涨价会带来什么影响?答:涨价了购买率可能下降,人均金额上升。至于涨价后总收入是多了还是少了,就得看两者的变化比例,这就是最基础最基础的价格变动评估模型了(如下图)
价格的敏感性,是可以事先测试的。在事先可以以优惠券为杠杆,以抽奖的形式测试用户的购买率,从而一定程度上推断涨价/降价多少合适。但是这种方式更适合测降价,涨价的话,用户本能的反感会比较强烈,所以不太适用。
那么,是不是到这里就结束了呢?还少了什么?
2 考虑商品属性
用户对购买率下降会受到以下因素影响:
l 价格锚定:锚定越模糊的,下降越少
l 刚需程度:刚需程度越高,下降越少
l 垄断程度:垄断度越高,下降越少
l 价格高低:价格越低,下降越少
l 认知程度:认知程度越低,下降越少
这五点要素,前四个都好直观理解,第五个稍微解释下:所谓认知程度,就是用户有多care这件事。我们生活中有很多资费都是默默扣掉的,比如水电煤气话费之类,除非某月突然暴增,或者商家主动推了营销活动,可能这些票子都从人们指尖流走了。
那么问题来了:视频会员的商品符合以上多少条?
几乎全中(如下图)
估计这就是为啥运营有底气提价的,疫情影响下,人们线上娱乐明显增多,可以从DAU,在线时长,连续播放率等数据轻易观察到这点。既然刚需度在增加,认知度天生低、价格又不贵,那涨了就是稳赚呀。
那么,考虑到这一层,是不是足够了呢?还少了什么?
3 考虑涨价细节
视频会员的价格和大米白面的最大区别是:这玩意价格锚定完全是人为做出来的。提供额外一个用户服务的边际成本几乎为0,因此运营可以任意捏价格,制造出新的锚定点,从而模糊用户的判断。
比如,原本只有一个每月支付25元成为会员,现在推出一个20月自动开通连续包月的业务。咋一看,便宜5元,用户很有可能开通。可考虑到实际使用率变化(比如我开会员就想追一个爆款剧,追完了就很少看了),很有可能到后续几个月,用户忘了取消付费,被自动付费扣掉额外的钱。这就是明降暗升的策略。
注意,用这个策略是有问题的,就是短期内收入会下降。因此也可以反向思维,定一个明升暗降的策略,通过牺牲后续月份的ARPU值,来短期内快速增加收入,收割一笔(如下图)。
当然,还可以通过联盟打包的方式,直接出一个新套餐,把价格锚定进一步模糊掉。比如拉上外卖平台一起送会员,打包定价。不要掏手机,现在马上问你美团或饿了吗的会员一个月多少钱!八成以上的人答不上来,但是感觉:只花了四五十块就拿两家会员,好划算哦,反正也要点外卖的。总之,价格锚定越模糊,用户承担涨价可能性越大。
所以,这个题目从一开始就不该这么问。如果在真实工作环境里,数据分析师要干的第一件事就是搞清楚:
1、到底是怎么涨的?
2、哪些具体的会员套餐组合在涨价?
3、是硬涨价,还是出新套餐软涨价?
4、是明降暗升还是明升暗降?
知道了这些,才能对业务走势有预判,才能知道哪些是业务意料之中的,哪些是意料之外的。不然很有可能忙活半天,只落得一句“早知道了呀”。
然而,这里还有问题,就是业务的如意算盘,消费者真的买单吗?
4 考虑用户行为
注意,以上每一种策略,都是有前提的,比如:
明降暗升策略:无感用户有足够比例/取消率低
明升暗降策略:用户对季度/年度套餐有足够付费率
锚定模糊策略:联营的产品得有足够的用户基础
如果这些前提不成立,分分钟策略会玩坏,或者是吸引不来足够的用户,或者是被人薅完一波走人。因此用户的购买转化率,复购率会直接影响涨价效果。
再进一步问:用户购买转化率,复购率又和啥有关?可能大家随口能说出:有热播剧看,别人家涨价更猛,新用户对收费没概念一类理由。但是注意:这些理由无法被数据量化。因此得找到能用数据验证的,比如:在线频次减少,单次在线时长下降,连续播放减少等等,区分新老用户(如下图)。这样才能找到更深层原因,而不是停在:自从提价以后20元套餐卖的少了,这种把图表又哔哔一遍的复读机水平上。
那么,考虑到这一层,是不是足够了呢?还少了什么?
5 考虑业务动作
都是涨价
等对手先调价VS 我先涨为敬
把新包装的套餐摆在前边 VS 直勾勾把价格表改了
满大街吆喝:我要涨价啦!VS 暗搓搓的改掉价格表
这些做法,都是已确定要调价的情况下,通过改变宣传话术,宣传节奏,宣传时机,达到更不同的效果。特别是针对虚拟产品,在价格锚定模糊的时候,就更容易给消费者产生错觉,从产生更强/更弱的效果。
作为数据分析,要了解这些具体细节,才能全面评估涨价动作的影响时间范围,而不是憨憨的按最基础模型,从调价一刻开始计算。
6 小结
综上,一个看似简单的题目,看似简单的业务逻辑,可结合具体行业特点,产品属性,用户习惯,业务动作以后,就衍生出各种可能性。
因此想做全面评估,就得对业务细节有深入了解,提前梳理清楚业务假设前提。这样才能定义清楚到底影响周期从啥时候开始算,到底哪些用户行为是自然演化,哪些是促销带动。否则,不做深入思考,只是憨憨的把每天付费数据摆出来,不但无法看到数据背后含义更是会在业务轮番攻击中败下阵来:
“你有没有考虑宣传影响!“
“你有没有剔除外部因素!”
“你有没有考虑长期效应!”
“你用旧产品体系模拟个屁!”
“转化率低了所以呢?”
“我们要深层次的分析!”
一个都回答不上来。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02