网络安全顾问斯特凡·马拉杰。
作为数据科学家,我们有时会有点过于…科学地看待事物。虽然数据科学家的核心技能与以往基本相同--统计学、数学和逻辑学--但总有新的技能出现。有时,这些与计算机编程的新范式或新的统计技术有关。
在今天的商业环境中,对于数据科学家来说,这些新兴技能中最重要的是软技能。尽管老派程序员告诉你什么,但事实是,今天没有人,包括数据科学家,可以忽视这些技能。它们不仅使团队合作更加有效,而且还能促进你的职业生涯。
在本文中,我们将带您了解数据科学家的五种最重要的软技能,并向您展示如何开发它们。
首先,如果你仍然对发展这些技能的必要性持怀疑态度,让我们来看看数据。谷歌最近的一项研究对几家大公司的员工进行了调查,试图评估最有生产力、最有创新精神的员工所拥有的技能。
结果可能会令人惊讶。创新不是由拥有最高技术水平的员工推动的,而是那些参与跨学科小组的最具生产力和创造性的工作人员。在这些群体中,那些拥有高度发展的软技能的人能够推动变革,更有可能升到管理职位。
当然,你所需要的技能类型取决于你的工作方式和工作重点。尽管如此,有一些技能对几乎每一个数据科学角色都是至关重要的。它们在这里:
作为一名数据科学家,你很可能已经为自己有能力向普通观众传达复杂的想法和数据分析而自豪。然而,有一个理由可以在你的角色的技术要求之外分享你的技能和专业知识。积极主动地接触你的客户和经理,不仅可以改善这些关系,甚至可以促进你的职业生涯。
能够对一屋子的科学家整理、分析和反刍大量与主题相关的数据是一回事,但能够将其本质传达给那些可能帮助你实现向上发展的职业抱负的人是另一回事。
假设有一天你在午餐室碰见了公司的CEO。她开心地在手机上冲浪,谷歌这个,那个,还有其他一切。由于IT部门每天都在向你灌输网络安全的想法,你不经意间提到使用世界上最受欢迎的搜索引擎是一个糟糕的想法,除非你喜欢跟踪和存储你的每一次在线活动。谈话接踵而至。首席执行官对你的精明和帮助的意愿印象深刻。下一次,当她参加董事会会议时,高管团队正在审查该提升哪名员工,该将哪名员工调往西伯利亚时,你的名字在她的记忆中浮现为一个乐于助人的家伙。
你得到了很大的加薪和一个带窗户的角落办公室。这一切都是因为您能够超越硬数据科学技能的限制,并以人类的身份进行联系。
有效、清晰、及时的决策是一项至关重要的业务技能。然而,它经常被数据科学家忽视。这可能会给公司带来重大问题,因为数据科学家可能会发现自己处于高级职位(参见上面的午餐故事),而没有必要的技能和知识来做出管理或商业决策。
然而,这并不是一项很难获得的技能。定期回顾当前和即将到来的行业趋势对于提高你的管理水平是非常有价值的,并且(再次)表明你渴望更多的责任。
批判性思维比这份清单上的其他一些软技能更难定义--事实上,这就是为什么一些文科专业的学生花了几年时间在大学里磨练这种技能。作为科学家,我们工作的方法似乎很少给批判性和创造性留下空间。这与事实正好相反。
最终,批判性思维允许你做两件事。一个是有效地过滤我们现在被轰炸的信息海啸。在前八大平台上有超过90亿的社交媒体用户,谁能跟上呢?没错。没人。
快速扫描和过滤信息的能力可能是你职业生涯中与众不同的因素。与批判性思维相关的另一个关键软技能是能够在动态中重新构建和修改数据分析,以便识别和解决手头的真正问题。
尽管数据分析似乎是一项孤独的任务,但现实是团队工作对组织来说一直很重要。这在一定程度上是由于我上面提到的研究,它强调了多学科团队在推动创新方面的价值。
如果你不是一个善于与人相处的人,也不具备与可能不分享你的专业知识或世界观的同事一起工作所必需的软技能,那么在这些环境中工作可能会带来压力。与同事建立专业关系的能力至关重要。
最后但绝对不是最不重要的是研究技能。数据科学的世界和那些在其中工作的人的角色正在快速变化。正因为如此,一个最重要的技能培养是进一步你自己的教育。
技术专业继续教育的重要性正逐渐被雇主所认识。如果你能及时了解这个领域的新技术、新问题和新工具,你就会期待更多更好的工作机会。
我们刚才讨论的软技能不仅是高效和胜任工作的必要条件,而且也受到雇主的高度追捧。成功的软技能发展可能是在未来工作场所获得成功的关键。伴随着更多的协作工作而来的是新的挑战。确定哪些技能是你需要加强的,现在就开始制定一个改进计划。
生物:斯特凡·马拉杰几乎是一名会计师,但现在对网络安全的了解超过了收入确认原则。20年后,他是一名网络安全顾问,为黑客的大脑提供洞察力,以找出他们到底在实施什么样的计算机渎职行为以及如何阻止它。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21