在Linux系统中,用户态和内核态是两种不同的运行级别。在用户态下执行的应用程序只能访问其所属进程的资源,而在内核态下执行的操作系统内核可以访问系统的所有资源。当一个应用程序需要访问受限资源时,它必须向内 ...
2023-04-19Pandas和Numpy都是Python中常用的数据科学库。其中,Pandas用于处理和分析结构化数据,通常使用DataFrame和Series等数据结构来表示数据,而Numpy则用于处理数值计算和科学计算,主要是数组运算。 在某些情况下,我们 ...
2023-04-19德尔菲法是一种专家评估方法,通常用于处理不确定性很高的问题。在这种方法中,一组专家独立地提出他们对问题的看法,并通过反复修正来达成共识。协调系数是一个评估专家之间达成共识程度的指标,它的值越接近1, ...
2023-04-19在 MySQL 中,视图是一个虚拟的表,它由一个 SQL 查询定义。虽然视图本身不存储数据,但是在查询过程中会被频繁使用,因此给视图添加索引可以提高查询性能。 在 MySQL 中,创建视图通常采用以下语法: CREATE VIEW v ...
2023-04-19在 MySQL 中,事务是指一系列的数据库操作,这些操作要么全部执行成功,要么全部回滚。在一个数据库中,事务处理非常常见。但是当涉及到多个数据库时,事务处理就需要特别注意,因为如果没有正确地处理,将会导致数 ...
2023-04-19Logistic回归是一种广泛使用的统计工具,用于预测二元因变量的概率。在SPSS中,Logistic回归模型的构建需要区分协变量和因子,以确保模型的准确性和可解释性。本文将探讨如何在SPSS中区分协变量和因子,并介绍如何 ...
2023-04-19卷积神经网络(Convolutional Neural Network,CNN)是一种经典的深度学习模型,广泛应用于图像识别、目标检测等领域。在CNN中,卷积核(Convolutional Kernel)是一个非常重要的组成部分,它通过卷积操作对输入数 ...
2023-04-19在SPSS中,将两张频率表整合在一起可以使用交叉分析功能。这个过程可以帮助研究者更好地理解数据、发现趋势和关系,并为进一步研究提供基础。 下面是一个简单的示例,以说明如何在SPSS中将两张频率表整合在一起 ...
2023-04-19在进行K均值聚类分析时,如何确定最优的分类数是一个非常重要的问题。一般来说,确定分类数需要考虑数据的特征和研究目的。下面将介绍一些常用的方法来确定最优的分类数。 肘部法(Elbow Method) 肘部 ...
2023-04-19MySQL是一种常用的关系型数据库管理系统,支持多种隔离级别来控制事务的并发访问。在MySQL中,RC(Read Committed)隔离级别通常被认为是最常见和默认的隔离级别。在RC隔离级别下,MySQL如何实现读不阻塞呢? 首先, ...
2023-04-19HBase是一个面向列的分布式NoSQL数据库,它是建立在Hadoop上的开源项目,在数据管理、存储和处理方面具有很高的可伸缩性和可靠性。虽然HBase与关系型数据库(RDBMS)的本质不同,但许多人仍然想知道为什么没有以HBas ...
2023-04-19当进行多元回归分析时,我们通常使用调整后的R方来评估模型的拟合程度。调整后的R方是对R方的修正,它考虑了自变量的数量和样本量对R方的影响。然而,当调整后的R方为负数时,这表示模型的表现非常糟糕,预测能力 ...
2023-04-19BP神经网络和logistic回归是两种常见的机器学习算法,它们都被广泛应用于分类问题。虽然这两种算法都有其独特的优点和适用范围,但在许多情况下,BP神经网络比logistic回归更为优越。 首先,BP神经网络可以处理非线 ...
2023-04-19Python3中的pandas库是一个非常强大的数据处理工具,尤其在与SQL Server等关系型数据库交互时,可以帮助我们快速进行数据读写和分析。本文将介绍一些方法来加快Python3 pandas对SQL Server的读写速度。 一、读取SQL ...
2023-04-18Spark是一款开源的分布式计算框架,支持运行在集群中的大规模数据处理任务。在Spark中,排序是一项非常重要的操作,它能够让我们更加高效地处理和分析大量数据。本文将探讨Spark排序的原理以及其实现方式。 Spark排 ...
2023-04-18在进行假设检验时,我们通常会计算出一个统计量,并将其与一个临界值进行比较,以确定是否拒绝或接受原假设。在t检验中,我们用t统计量来比较两组样本的平均差异。如果t统计量的值大于临界值,则我们可以得出结论 ...
2023-04-18XGBoost(eXtreme Gradient Boosting)是一种强大的集成学习算法,常用于解决分类和回归问题。它是一种基于决策树的机器学习算法,在解决分类问题时,每一轮迭代拟合的是残差。本文将对XGBoost分类问题中每一轮迭代 ...
2023-04-18主成分分析是一种常用的多元统计方法,它可以帮助我们减少数据维度、提取主要特征和结构,并将其转换为新的变量。在进行主成分分析时,一个重要的问题是是否需要对原始数据进行标准化。 首先,让我们了解一下什 ...
2023-04-18Hadoop和HBase是两个非常流行的大数据处理技术,它们通常用于处理海量数据。在这篇文章中,我们将探讨Hadoop和HBase是否适合存储海量小图片。 首先,让我们介绍一下Hadoop和HBase。Hadoop是一个开源框架,用于分布式 ...
2023-04-18在Linux操作系统中,进程间通信是必不可少的功能。当两个进程需要共享资源时,他们可以通过各种IPC(Inter-Process Communication)机制来实现这一目的。其中之一是传递文件描述符。 在Unix/Linux中,所有打开的文件 ...
2023-04-18大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31