numpy是一款功能强大的python库,通常被用来存储和处理大型矩阵。numpy可以支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库 。相信大家在数据分析过程中一定少不了numpy的帮助,为了帮助大家巩固numpy的学习和实用成果,一起来跟小编做下边的20道题吧.
以下内容来源: 早起Python
作者:刘早起
大家好,又到了NumPy进阶修炼专题。
NumPy大家应该不陌生了,看了太多的原理讲解之后,用刷题来学习是最有效的方法,本文将带来20个NumPy经典问题,附赠20段实用代码,拿走就用,建议打开Jupyter Notebook边敲边看!
01数据查找
问:如何获得两个数组之间的相同元素
输入:
import numpy as np import pandas as pd import warnings warnings.filterwarnings("ignore") arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6)
答案:
arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6) print("arr1: %s"%arr1) print("arr2: %s"%arr2) np.intersect1d(arr1,arr2)
02数据修改
问:如何从一个数组中删除另一个数组存在的元素
输入:
arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6)
答案:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10) print("arr1: %s"%arr1) print("arr2: %s"%arr2) np.setdiff1d(arr1,arr2)
03数据修改
问:如何修改一个数组为只读模式
输入:
arr1 = np.random.randint(1,10,10)
答案:
arr1 = np.random.randint(1,10,10) arr1.flags.writeable = False
04数据转换
问:如何将list转为numpy数组
输入:
a = [1,2,3,4,5]
答案:
a = [1,2,3,4,5] np.array(a)
05数据转换
输入:
df = pd.DataFrame({'A':[1,2,3],'B':[4,5,6],'C':[7,8,9]})
答案:
df.values
06数据分析
输入:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10)
答案:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10) print("arr1的平均数为:%s" %np.mean(arr1)) print("arr1的中位数为:%s" %np.median(arr1)) print("arr1的方差为:%s" %np.var(arr1)) print("arr1的标准差为:%s" %np.std(arr1)) print("arr1,arr的相关性矩阵为:%s" %np.cov(arr1,arr2)) print("arr1,arr的协方差矩阵为:%s" %np.corrcoef(arr1,arr2))
07数据抽样
问:如何使用numpy进行概率抽样
arr = np.array([1,2,3,4,5])
输入:
arr = np.array([1,2,3,4,5]) np.random.choice(arr,10,p = [0.1,0.1,0.1,0.1,0.6])
答案:
08数据创建
问:如何为数据创建副本
输入:
arr = np.array([1,2,3,4,5])
答案:
#对副本数据进行修改,不会影响到原始数据 arr = np.array([1,2,3,4,5]) arr1 = arr.copy()
09数据切片
问:如何对数组进行切片
输入:
arr = np.arange(10)
备注:从索引2开始到索引8停止,间隔为2
答案:
arr = np.arange(10) a = slice(2,8,2) arr[a] #等价于arr[2:8:2]
10字符串操作
问:如何使用NumPy操作字符串
输入:
str1 = ['I love'] str2 = [' Python']
答案:
#拼接字符串 str1 = ['I love'] str2 = [' Python'] print(np.char.add(str1,str2)) #大写首字母 str3 = np.char.add(str1,str2) print(np.char.title(str3))
11数据修改
问:如何对数据向上/下取整
输入:
arr = np.random.uniform(0,10,10)
答案:
arr = np.random.uniform(0,10,10) print(arr) ###向上取整 print(np.ceil(arr)) ###向下取整 print(np.floor(arr) )
12格式修改
问:如何取消默认科学计数显示数据
答案:
np.set_printoptions(suppress=True)
13数据修改
问:如何使用NumPy对二维数组逆序
输入:
arr = np.random.randint(1,10,[3,3])
答案:
arr = np.random.randint(1,10,[3,3]) print(arr) print('列逆序') print(arr[:, -1::-1]) print('行逆序') print(arr[-1::-1, :])
14数据查找
问:如何使用NumPy根据位置查找元素
输入:
arr1 = np.random.randint(1,10,5) arr2 = np.random.randint(1,20,10)
备注:在arr2中根据arr1中元素以位置查找
答案:
arr1 = np.random.randint(1,10,5) arr2 = np.random.randint(1,20,10) print(arr1) print(arr2) print(np.take(arr2,arr1))
15数据计算
问:如何使用numpy求余数
输入:
a = 10 b = 3
答案:
np.mod(a,b)
16数据计算
问:如何使用NumPy进行矩阵SVD分解
输入:
A = np.random.randint(1,10,[3,3])
答案:
np.linalg.svd(A)
17数据筛选
问:如何使用NumPy多条件筛选数据
输入:
arr = np.random.randint(1,20,10)
答案:
arr = np.random.randint(1,20,10) print(arr[(arr>1)&(arr<7)&(arr%2==0)])
18数据修改
问:如何使用NumPy对数组分类
备注:将大于等于7,或小于3的元素标记为1,其余为0
输入:
arr = np.random.randint(1,20,10)
答案:
arr = np.random.randint(1,20,10) print(arr) print(np.piecewise(arr, [arr < 3, arr >= 7], [-1, 1]))
19数据修改
问:如何使用NumPy压缩矩阵
备注:从数组的形状中删除单维度条目,即把shape中为1的维度去掉
输入:
arr = np.random.randint(1,10,[3,1])
答案:
arr = np.random.randint(1,10,[3,1]) print(arr) print(np.squeeze(arr))
20数据计算
问:如何使用numpy求解线性方程组
输入:
A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]]) b = np.array([9, 8, 3])
备注:求解Ax=b
答案:
A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]]) b = np.array([9, 8, 3]) x = np.linalg.solve(A, b) print(x)
以上就是我总结的NumPy经典20题,你都会吗?并且每题我都只给出了一种解法,而事实上每题都有多种解法,所以你应该思考是否有更好的思路!
走到这里,NumPy80题就结束了,完整版80题将会在近期发布,尽情期待!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31