大数据项目成功的七大秘密_数据分析师考试
大数据项目的成功有哪些法宝?又有哪些陷阱会导致大数据项目的失败?本文中的三位专家将对此进行详解。
如今,许多企业都理解了大数据的构成,但是要取得大数据项目的成功则是另一回事。Gartner公司的分析师,Doug Laney。 Forrester公司分析师Mike Gualtieri。International Institute for Analytics的高级研究学者,Robert Morison 都是大数据领域的专家,他们对于企业如何使用大数据有着独特的视角。 以下是他们认为可以帮助大数据项目成功的因素 ,以及那些可能会导致大数据项目失败的原因。
从小项目开始
CIO们以前也听到过这个建议,但从小项目开始到底意味着什么? “这意味着从一个你认为可以提高业务绩效的领域着手,从一个你认为分析更多数据可以获得更多信息的领域着手,” Institute的Morison说。
他举了一个制药企业的案例,这家企业想把它的产品收率提高1%到2%。使用传统的商业智能工具, 它可以分析一定数量的生产历史,从而发现生产流程中可以进行调整的部分。然后,企业想知道,如果分析更多的数据,是否可以帮助确定生产表现的真正推动力。随后,采用Hadoop相关的开源技术,该企业在一周内分析了过去三年的生产历史。
“很快,他们开始开发各种变量组合的热点地图——在这个案例中,压力,温度,搅拌和速率这些参数,都可以带来更高的产品收率,” Morison说。“因此,在几个月的时间内,他们从分析更多数据能带来什么成果,发展到在制造工厂开展实验,从而获得产量的提高。 ”
不断试验
是时候CIO们和业务主管从传统的消费,目标导向的IT项目管理风格中脱离出来了, Morison说。取而代之的,鼓励试验项目和创造性思维。在之前提到的制药企业案例中,“目标就是一边进行试验,一边进步和学习,”他说。“这一案例中真正有价值的是,一旦他们开始这样做,每一批新的产品,就成为了数据库的一部分。 他们拥有了一个持续的反馈回路。这个试验使业务表现越来越好。”
Gartner的Laney认为试验应该包括 “那些看似并不自然相关的数据源集成在一起。” 比如,零售商,分析监控录像数据“来了解商店内的客流量,”让他们有机会确定购物习惯和购物模式,他说。
采用Hadoop技术
大数据不是只有Hadoop技术,“但Hadoop是一个很大的催化剂”,因为它既廉价,又容易获取, Forrester的Gualtieri说。 许多获得大数据项目成功的企业,都或多或少以Hadoop技术为背景。“采用Hadoop。把它作为你的数据试验平台,因为你可以在相对成本更高效的情况下,整合所有数据, ”他说。
点亮“暗数据”
Laney把企业内存储后就再没有使用过的数据称为 “暗数据,”他鼓励CIO们考虑这些数据的价值。一些企业已经开始这样做了。比如,保险公司,使用文本挖掘工具分析以往的理赔报告,来更好地理解保险行业的欺诈行为或发展趋势,Laney说。
此外,让暗数据重见天日可能带来新的,有价值的收入来源。Dollar General公司通过和客户分享消费包装商品信息来支付他们的企业数据仓库费用, Laney说。软件即服务供应商Clothes Horse, 是一家新创立的,帮助在线购物者决定衣服是否合身的企业,它分析顾客数据来帮助零售商更好的了解顾客的偏好。更多新平台也不断出现,帮助分发,并销售各类供应商的数据,Laney说,包括: Microsoft;ProgrammableWeb,2013年被MuleSoft收购;Data Market,去年秋天被QlikTech收购;还有qDatum,一家总部位于德国的创业公司。
不要跟随R语言热潮
虽然开源编程语言R通常与数据科学相关联,CIO们不需要雇佣熟悉R语言的数据科学家来开始一个高级分析项目。现成的软件对于企业已经足够。 Gualtieri认为,正如CIO们不会让Java开发人员对商业智能报告进行编程一样,这同样适用于高级分析项目。 Alpine Data Labs,Alteryx,SAS,RapidMiner和KNIME的工具足够成熟,来完成80%的预测分析工作,而不必从头开始创建一切,他说。
不要仅是报告数据
超越传统的分析方法,使用大数据进行分析的企业具有巨大优势。“这已经远不是饼图和柱状图了,”Gartner的Laney说。 “将数据集成到业务流程中,而不只是报告数据。”Gualtieri同时认为高级分析项目是一个优势。 “你能在继续传统报告的同时,使用大数据做出更好的报告吗?但是这并没有带来很多不同。 真正的竞争优势是当你使用那些数据,创建预测模型,”他说。遗憾的是,缺乏这样的数据科学家,Gualtieri说超越传统分析的想象力非常稀缺。
不要认为分析一定会被采纳
Morison认为分析项目失败的其中一个原因是 “相当不错的分析项目完成后,但没有被采用。”与业务部门密切合作,可以避免这类问题,他说,最近与几位首席分析师的谈话中,他得出这样的经验: “如果没有业务合作伙伴在过程中的支持,他们是不会开始项目的,即使这个项目很值得进行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17