如何看待利用大数据做疾病诊断这件事_数据分析师考试
起因是朋友的实习生跟朋友打了一个多小时的电话BLABLA各种向往移动医疗,号称大数据能改变医疗现状引领人类走向新时代(误
而我俩约了吃饭结果我呆呆一个人吃了半天心生怨念
---------------------------又是分割线---------------------------------------
我就想举个例子就是Dr,Saint SYR。
他是一名来自美国的全科医生,一直在北京普及PM2.5和空气污染等的相关知识(室内点蜡烛和吸烟会弄出特别多的PM2.5哦!),结果在去年11月因为单纯性呼吸困难给自己诊断了哮喘,使用支气管扩张剂之后明显好转,大家可以想象一下一个天天宣传怎么戴口罩开空气净化器的大夫得了这个病是如何得打脸。。
而他也经历了相当多的斗争,思考是不是要回美国。事情再今年2月又了变化,他的病情进展了,发现其实是细菌性的肺炎!抗生素治疗之后啥啥都好了!
讲这个故事,因为:
1,这是个很很有意思的八卦
2,很多人觉得之前的诊断是误诊,包括采访他的媒体都是这么报道的,但是我真觉得不是误诊
3,疾病在不同阶段展现出来的症状体征真的不一定典型,怎么能让数据诊断不变成数据误导医生诊断呢?
那些什么多中心回顾性的循证医学的实验,也是处理各种数据,对方这么多年都做不出来的数据,缘何这么多人如此信心满满?
首先表明观点:我认为,自动化诊断是未来趋势,但现在不成熟,有很大的发展空间。
最先要指出的是,大数据诊断,并非单纯的收集数据得出统计结论,而是有一定的人工智能算法在其中起推断作用。其中简单有效,而且最符合人的判断逻辑的算法叫做贝叶斯网络,在足够多的数据(这点很难就是了)的前提下,完全可以比任何一个个人人做出的判断更加准确。在数据不足的情况下,也有可以和不少个人媲美的推断能力,至少在少见病的诊断上,其准确率是远远高于人的。国外有这样的诊断辅助产品,就是针对少见病诊断市场。国内目前完全空白。
我们先来看看现在的临床诊疗。
1、现代医学是循证医学(EBM)。也就是临床实践都是以基础科学研究和大规模的临床实验结果作为支持的。这些结论,都是大量的数据采集和分析的结果。
2、现代医学的临床实践仍然处于经验为主的阶段,EBM的结论,并不能直接完全覆盖实际病人身上发生的具体情况。基于EBM的基础部分的结论,结合实践经验,仍然是现阶段临床实践最重要的方式。
3、大量未得到良好教育和缺乏检查受手段的医务工作,仍然是目前医疗的主要力量,尽管国内有最好教育的医生和最好检查手段的三甲医院,依然人满为患。
4、全科医生的作用被严重低估,而大量专科医生扮演起了全科医生的角色,化了很大的精力在处理一些“小病”上。
总结一下就是:EBM指导的部分有局限,EBM+经验医疗是主流,条件差,水平低,专业不对口的医生是主流。
大数据可以解决什么问题呢:
1、扩大EBM的适用范围。如果可以精确地采集数据,EBM在医疗中的比重将更快地上升,总体医疗质量提高。
2、个人经验无关紧要,大数据将使得个人经验跟多地转变成全人类经验,误诊、漏诊将大大减少,从而提高整体医疗质量。
3、医院分工、医生分工将更加明确:大医院解决负责病情,中医院解决一般病情,小医院解决慢性病于预防接种保健。因为医生的诊断已经不依赖个人经验,从而对普通疾病和罕见疾病的准确率可以有保证;只有病情复杂,治疗手段复杂,需要建立MDT(多学科团队)的病人,才需要大医院和专家的处理。
4、所有医生的工作负担均会一定程度上的减轻,从而带给病人的医疗服务质量会有提升。
而现阶段大数据做不到的事情:
1、精确地、自动化地数据采集。毫无疑问,同一个样品去不同医院的实验室同时做化验,结果都会不同,这已经是自动化程度非常高的了(这个问题其实可以通过实验室间校准解决)。跟别提那些可穿戴设备了,可以达到临床参考级别的设备实在是太少。而医疗数据的维度也特别高,如何让大数据去自动处理病人的CT资料?而病史,体检等描述性资料,更离不开临床工作者的采集。总之,数据采集方面,完全没办法离开一线临床工作者。
2、To cure sometimes,to relieve often,to comfort alway. ——E. L. Trudeau。真正能治愈的疾病实在是少得可怜(其实大多也不是治好的,只是身体自己好的),更多的时候,医生做的只是在减轻痛苦,抚慰心灵。这部分工作,大数据能帮上的忙就十分有限度,大数据最多只是减轻医生其他方面的工作,从而换取更多的精力到人文关怀上。
真正可以靠大数据看病了,那得是人工智能发展到可以超越大部分人类的时候了。但并不意味着大数据在现阶段完全没有价值。这部分的价值其实是非常巨大的,只是要找到有能力去做的人,同时又能找到买单的人很困难。就像Google研究无人驾驶汽车一样,未来一定会大部分时候完全无人驾驶,而现在的无人驾驶技术依然有巨大的技术价值(比如说可以避免很多高速公路上的车祸)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-25“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-25在数据分析中,地图是一种非常直观的可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。无论是展示销售数据、人口 ...
2025-02-25春风拂面,金三银四的求职季如期而至。谁都想在这场竞争里拿下心仪offer。 一份亮眼简历是求职敲门砖,面试紧张则可能让机会溜 ...
2025-02-24当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04