健康云上如何进行大数据的挖掘与分析(一)
本文旨在介绍区域医疗信息系统建设和大数据分析技术的发展,并总结出健康云上的大数据分析面临的特殊挑战和提出初步解决方案。
一、健康云的兴起
随着我国经济持续稳定的发展和现代科技的日益进步,越来越多的人们开始重点关注自身健康。在满足日常工作和生活的需求之外,规律的健身休闲活动、年度体检、健康饮食已经成为越来越普遍的想象。与此同时,随着国家新医改政策的颁布和实施,与健康直接相关的医疗行业也正在迅猛发展。这里重点介绍一下我国医疗行业IT解决方案市场呈现的发展趋势:
1、 渐增的多样医疗数据源:医疗数据的生成和采集已经不再仅局限于医院这个单一环境。它还可以来自于体检中心、社区/乡镇卫生院、私人诊所、实验室检验中心、急救中心、家庭,随着物联网(IoT, Internet of Things)相关技术的发展,我们甚至可以说:个人医疗数据可以采自于任何适合的地方。
2、 医疗数据的高度集中化:区域医疗信息系统(RHIS, Regional Health Information System)将逐步取代现有的基于医院的信息系统。并且,它将更广泛的覆盖一个特定区域内的所有医院、社区、急救中心、体检中心、实验室检验中心、社会保险机构等。居民个人来自各个数据源的全周期医疗数据将集中保存在统一的区域数据中心中。医疗数据将不再只是某家医院独享的资源,而是与整个区域中的所有医疗机构共享,甚至可以与更上层的大区域级、国家级信息系统进行数据交换。
3、 从医疗信息系统到医疗信息服务:区域医疗信息系统的逐步建立将使先进的医疗信息服务的设计和开发变得更加便捷。例如:流行病分析、公共卫生事件预测、临床决策支持、慢性病管理、个性化的健康照护计划、日常卫生保健管理等。其原因是因为这些信息服务必须建立在数据集中化的基础上。这些服务的受众群体将是整个社会。
正是如上所述的发展趋势使得“健康云(Healthcare Cloud)”的建立才会成为可能。试想一下:在不久的将来,我们可以通过手机统一查询在不同医院的就诊记录、生化检验结果、处方和收费清单;慢性病患者在家中可以自测血压、血糖等指标并通过无线网络上传到区域医疗数据中心,医生也可以远程分析患者自测数据判断其病情发展;大量的知识和规则从海量数据中自动提取出来,并用来协助社区及基层卫生机构的初级医生对患者作出准确的诊断和用药决策;各个社区居民的医疗数据将会自动汇总,并进行统计分析,用以进行流行病、慢性病的自动筛查、趋势分析和爆发预警,为公共卫生机构制定防治干预计划和行动提供有力的依据和参考;患者的症状、生命体征、检验检测结果、医疗影像、诊断、处方、医嘱、手术、住院和账单等全周期数据将会进行全方位的跟踪和分析,为新药开发、新治疗方案的设计提供支持。上述这些事例都将是我们通过健康云可以逐步实现的。
当然,健康云不是一天就可以建成的,这将是个阶段性的工程。除了国家政策和地方支持等外围因素之外,云计算和大数据技术将会起决定性作用。从构建底层云基础架构、云存储方案,到中层的云计算平台,最后到上层的云应用服务设计和开发,至少需要3~5年的长期规划。其中,大数据分析部分更是纵向贯穿于云基础架构、云平台和云服务三层,需要整体设计和逐步实施。基于现有技术和需求,在本文中,我们暂且把健康云简化定义为:基于区域医疗信息系统的医疗信息服务,并重点关注1~3年的市场需求。
二、大数据分析技术的发展
区域医疗信息系统中的医疗数据是典型的大数据。我们知道所谓的“大数据”并不只是数量上的“大”。在此,我们简单套用一下大数据的4V(Volume,Velocity,Variety,Value)定义:
1、 Volume:区域医疗数据通常是来自于拥有上百万人口和上百家医疗机构的区域,并且数据量持续增长。按照医疗行业的相关规定,一个患者的数据通常需要保留50年以上。我们可以想象这是多么巨大的数据量。
2、 Velocity:医疗信息服务中可能包含大量在线或实时数据分析处理的需求。例如:临床决策支持中的诊断和用药建议、流行病分析报表生成、健康指标预警等。
3、 Variety:医疗数据通常会包含各种结构化数据表、非(半)结构化文本文档(XML和叙述文本)、医疗影像等多种多样的数据存储形式。
4、 Value:医疗数据的价值不必多说,它不仅与我们个人生活息息相关,更可用于国家乃至全球的疾病防控、新药研发和顽疾攻克。
近年来,在卫生部的领导下和国家财政支出的支持下,绝大多数的三甲医院和部分二级医院已经先后建立了先进的数字化信息系统和电子健康档案系统。但至今为止,大部分系统和数据仍然只限于内部使用。据了解,2010年底,卫生部完成了“十二五”卫生信息化建设工程规划编制工作,初步确定了我国卫生信息化建设路线图,简称“3521工程”,即建设国家级、省级和地市级三级卫生信息平台,加强公共卫生、医疗服务、新农合、基本药物制度、综合管理5项业务应用,建设健康档案和电子病历2个基础数据库和1个专用网络建设。由此可看出,今后的几年,随着云计算技术的成熟和实用化,大规模区域医疗信息系统和大型数据中心的建立将逐步展开。然而,随着海量医疗数据被保存下来,一个棘手的问题出现了:我们如何通过高效的分析这些数据来提供有价值的服务?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31