大数据之基于模型的复杂数据多维聚类析(一)
随着现实和虚拟世界的数据产生速度越来越迅猛,人们开始关注如何从这些数据中获取信息,知识,以及对于决策的支持。这样的任务通常被称作大数据分析(BigData Analytics)。大数据分析的难点很多,比如,由于海量数据而带来的分析效率瓶颈,使用户不能及时得到分析结果;由于数据源太多而带来的非结构化问题,使传统的数据分析工具不能直接利用。
本文讨论大数据内部关系的复杂性,以及复杂数据所带来的对于聚类分析的挑战。聚类分析的目标是依据数据本身的分布特征(无监督),把整个数据(空间)划分成不同的类。基本的准则是同类的数据应该具有某种的相似性,而异类的数据应该具有某种差异性。现有工作假设在这些数据中存在单一的聚类划分的方法,而聚类目标就是找到这样的一种划分。然而,我们在大数据中所面对的复杂数据是多侧面的,比如在网页数据中既有关于内容的文本属性,也有指向这个网页的链接属性。多侧面数据本身就存在着多种有意义的划分,强制地将数据按照单一的方法聚类,得不到有效的、明确清晰的、可诠释的结果。针对这个问题,多维聚类方法针对数据的不同侧面,得到数据聚类的多种方法,最后让使用者决定需要的聚类划分。
多维聚类的概念
假设我们需要对图中的所有图片进行聚类,可能的聚类方法不止一种:按照图片的内容,我们可以把左边的图片标注成袋鼠,而右边的标注成树;而按照图片风格属性,我们可以把上面的图片称为色彩图,而下面的称为线条图。简而言之,关注数据的不同侧面,有可能得到不同的聚类结果。同时这些聚类结果也都是有意义,可以解释的。
生活中多维聚类的例子很多,比如对于人群的划分,可以按照男女等人口统计学信息划分,也可以按照对于某个事件的看法划分。那么从机器学习的角度如何公式化这样的问题,之后又怎么利用概率统计的方法去解决这样的问题呢?下面我们先给出问题的定义。
如图所示,在聚类分析这样的无监督学习中,输入是一个数据表。表的每一行表示一个数据点,而每一列表示描述这个点的一维属性。大数据的一个重要特征就是维度很高(包含很多列),从而带来的维度灾难(curseof dimensionality)。在聚类分析中,表现为:这些维度可能自然地分成一些组,每组包含一些属性,反应了数据某一侧面(facet)的特征。用户可以根据其中一个侧面的属性,对这个数据进行聚类。比如在右表的数据中,一个学生的数据包含了数学成绩,理综成绩,文综成绩,和语文成绩这些属性。我们可以关注学生的数学和理综成绩,按照理科成绩(分析能力)对学生进行聚类;同时也可以关注学生的文综和语文成绩,按照文科成绩(语言能力)对学生进行聚类。
所以多维聚类的问题定义为:
如何发现数据中包含的多个侧面,即属性的自然分组,针对这些不同侧面进行聚类,从而得到多种聚类方法。
多维聚类分析的工具和原理
贝叶斯网络是一种表示和处理随机变量之间复杂关系的工具。它是通过在随机变量之间加箭头而得到的有向无圈图。箭头表示直接概率依赖关系,具体依赖情况由条件概率分布所定量刻画。出于对计算复杂度的考虑,人们会对贝叶斯网络进行一些限制,在实际中使用一些特殊的网络结构。隐树模型(latent tree model)是一类特殊的贝叶斯网,也称为多层隐类模型(hierarchical latent class model), 是一种树状贝叶斯网, 其中叶节点代表观察到的变量,也称为显变量,其它节点代表数据中没有观察到的变量,也称为隐变量。
图中给出了隐树模型的一个例子。其中,学生的“数学成绩”、“理综成绩”、“语文成绩”和“文综成绩”是显变量,而“智力”、“分析能力”和“语言能力”则是隐变量。从“分析能力”到“数学成绩”有一个箭头, 表示“数学成绩”直接依赖“分析能力”,具体依赖情况由右图中的条件概率表所定量所刻画。表中的内容是说,分析能力低的学生在数学科有0.5的概率不及格、0.4的概率及格、0.1的概率得良,而得优的概率则是0; 等等。模型中的其它箭头代表其它变量之间直接依赖关系,每个箭头都有相应的条件概率分布。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21