大数据的分岔路:一软到底还是软硬兼施?
在计算机发展史上,先是做硬件的风光,IBM曾经一枝独秀,然后就慢慢不行了;做计算机软件的开始发力,微软独占鳌头,IBM被迫向软转型。
在互联网发展史上,同样先是做硬件的风光,SUN和北电都曾得意一时,然后就慢慢不行了;做网络服务的开始发力,雅虎、谷歌、FACEBOOK先后称霸。在人类社会开始向大数据时代开始迈进的时候,相似的历史进程会不会重演?
大约从08年开始,广义的互联网产业出现了两个相互对立的发展路径。一个是以FACEBOOK为代表,逐渐发展出了以个人为中心,以人际关系为传播动力的WEB2.0平台。另一个是以苹果为代表,逐渐发展出了以个人数据终端为中心,以数据终端间的互动为传播动力的另类WEB 2.0平台。前者可称为软平台,后者可称为硬平台。
无论平台软硬,背后的逻辑是一致的,即通过平台生产,获取,整理,融合,利用尽可能多的网络用户和网络服务商的内容和行为数据,并在此基础上探索全新的商业模式。就软平台而言,迄今为止仍在坚持一软到底的初衷,认为无论人们使用何种硬件数据终端,只要还是用我的软平台,那么数据的汇集仍然会以软平台为中心,硬件厂商还是辛辛苦苦地为我打工。就硬平台而言,至少对产业顶端的几家企业来说,已经不是经典意义上的纯粹硬件制造商,而是集硬件,操作系统,开放平台和应用商店为一体,软硬结合,无缝整合的新型硬平台。
在大数据时代,究竟是一软到底的软平台还是软硬兼施的硬平台能够成为大数据时代的数据汇集点,在激烈竞争和产业整合中最终取胜,现在下结论恐怕为时尚早。
FACEBOOK在推出开放平台的6年间,一直将公司的使命定义为让全世界所有的人互相连接起来。然而,就在用户规模超过12亿,股价大幅飙升的时刻,公司创始人扎克伯格在9月初宣布了重新定义过的新的公司使命:让世界上的一切互相连接起来。这就将过去仅仅发力于人与人的关系,扩展到了人与物,物与物的关系,把潜在的市场规模扩大了千百倍。也就是说,在现实世界中的万事万物正在以极高的速度和加速度生成数据化的存在方式时,FACEBOOK有雄心把这个数据化世界中的一切连接起来,创造新的服务模式和商业模式。要做到这一点,它必须像现在创造出人与人关系数据的产业事实标准一样,创造出人与物,物与物关系数据的产业事实标准。而这在自身不具备自家硬件数据终端和操作系统的情况下,无疑是个巨大的挑战。
由于让FACEBOOK这样的后生小子抢了软平台的先机,业界几家传统老大只好半自觉半无奈地走上了软硬兼施的硬平台之路。谷歌以搜索生态圈和安卓操作系统为核心,同时向手机、平板电脑、眼镜、手表、汽车、卫星和高速宽带等五花八门的数据终端和系统全面出击,希望以量取胜,成为大数据时代的事实标准。苹果在确立了软硬兼施的路径之后,近年来竟然无所作为,将乔布斯拼命夺来的历史先机付之东流,与谷歌竞争已落下风。微软在长达近十年的踌躇不前,欲进还退后,终于出手收购了诺基亚,完成了谷歌,苹果,微软三国演义的产业格局。三家之间能否达成数据共享或数据交换协议,甚至形成共同的数据标准,是硬平台能否战胜软平台的关键。否则,任何单独一家都无法与FACEBOOK抗衡。
这场即将决定产业今后十数年走向的决战正在这四家市值过千亿美元,用户过十亿,全球为市场的巨头之间进行。这场决战完全与中国网络业无关,我们仍然在模仿者和跟随者的道路上洋洋自得地行走着。迄今为止,中国尚未出现一家居市场领先地位的软平台,虽然特殊国情为此提供了相当的机会。最有机会进化为软平台的当属微信,不过要看腾讯有无这样的决心,试金石就是它有无勇气尽快将自家的种种服务和产品整合到微信生态圈内,并将微信平台建成,同时全方位开放。微博有成为软平台的一线希望,但新浪的DNA决定了它无法承担如此挑战,除非做出全面的内部调整。百度和阿里具备一定的资质与能力,但它们好像志不在此,仍然停留在自家垂直领域深耕不止。
至于那些做手机、做盒子、做电视等硬件数据终端的公司,肯定与硬平台建设无关,把这些努力理解为IT制造业新一波可能更准确些,虽然旗帜上的确写着硬件加服务的口号。这些依赖安卓系统为生的东西,最好的结局就是成为谷歌大数据生态圈里的一员,扮演数据提供者的角色。如果未来硬平台战略在大数据时代占了上风,它们有机会在生态圈下游混日子。如果未来软平台战略得势,它们的日子就会很难过了。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10