大数据的崛起完全重塑了决策权
我合作的组织越发纠结于如何平衡好两种极端的经营原则。一方面,他们绝望地寻找更强的灵活性;而另一方面,他们真地想要在他们的运作当中容纳所有合适的利益相关者。这个矛盾令人不安地超越了传统的“集权/分权”争论。顾客和客户要求更大的灵活性,而雇员和伙伴则期望更大的授权。因此,公司非常努力去提供两者。
要囊括更多的人,唉,典型地增加协调成本和回应时间。但是,近乎自相矛盾地,更强的组织灵活性要求更多的反应和增强的协调。涉及越多的利益相关者,决策就越可能延迟。但是有效的灵活性频繁要求包含利益相关者的参与。
换句话说,越多的人越经常想要做出越灵活的决定。这样的矛盾使我的客户几近发疯。在一家财富1000千强公司,比如“火焰战争”(flame wars),其客户支持小组(极度想要更快地回应顾客抱怨)与技术设计小组 (同样极度想要避免点对点修复)爆发冲突。在没有对方协助下,双方都无法有效地解决问题,但是他们间的部分重叠职责很快变成矛盾的源头,而不是合作。这样的异常状况并不稀少。
数字网络化的企业经营——无论是基于Slack、Chatter、Skype还是Google Doc——都极度地加剧了矛盾和痛点:越来越多利益相关者能够及时地获取和分析可操纵的信息。技术促进了整个企业经营的生态系统的更高层次的信息透明和能见度。实时处境意识极大地增加,但是管理和运作的能力以处理数据驱动的信息或许没有。
目前为止,最佳和最有用的管理那些矛盾的方法源于Michael Jensen于25年前在决策权方面取得的突破性进展。简单地说,决策权厘清了决定和决策的权威和问责。决策权关于组织如何决定“如何做出决定”给予谁权利去做决定。你可以把这想作企业决定的管理模型。
Jensen微妙的和机智的见解是做出决定的权利——不仅仅是进行任务或承担任务的责任的能力——对于组织效率和效益是至关重要的。所以,授予和分配决策权在组织上完全如同分清工作、角色和任务一样重要。这样看来,决策权可以和应该作为授权的管理机制。你或者你的团队拥有的决策权越大,你们的授权和责任就越大。
RACI框架提供了一个Jensen决策权方式的极好的真实示例:
谁负责。谁负责完成任务?
谁批准。谁在做决定和对任务做出行动?
咨询谁。和决定与任务相关的,向谁沟通?
告知谁。在项目/过程中,谁要被告知最新决定和行动?
这些问题不复杂也相对容易去辨识。亦即,数字上把RACI审阅中确认的相关个体和团队连接起来应该是直观的。越来越多与我合作的组织使用RACI(或者一些别的版本)去创造可审计的项目和过程管理的问责网络。
这些网络同时变成包含和灵活的平台。那些想要被咨询或被告知的个体和团队能够要求选择参与到网络中;相反地,当给予批准或进行负责的管理者需要更多的灵活性以回应顾客需要时,他们可以使用RACI网络从而取得一个“准时制”回应。标记这些网络能给利益相关者创造能见度和清晰度和高管人员等。他们提供窥测公司决策等级结构的至关重要的窗口和镜头。
有趣的、讽刺的和重要的是,我发现应用决策权的数量增长最快的方面重点在数字化、数据和分析学。谁有权利去获取、加工和分析数据成为企业经营中机会和竞争最大来源。这种结构的转变完全超越了Jensen二十五年前的设想和描绘,因为大数据的崛起——还有其相关的分析学——改变了围绕决策权进行的当代辩论和争论。
关于数据的决策权越发要求关于决策权的数据。换句话说,如果你的组织已经获取加工并分享10倍到100倍更多的数据,你现存的决策权机制非常可能可悲地过时了。也就是说,会有任何认真的品牌经理在今天进行一项没有能力去结合社交媒体分析的市场营销活动?但是品牌经理需要富有计算能力的数据科学家和分析工具以从数据中获取更大的价值。决定和定义品牌管理如和数据管理如何合作需要决策权。
在一家我工作过的公司,大数据的崛起完完全全重塑了决策权和RACI讨论。该公司过去着重研发新产品。但是随着手机软件的崛起,该公司的创新重点从更好的产品转移到促进更好的用户体验。那转换了RACI决策权模板。用户体验(UX)的问责比起产品更要求不同的数据和分析学;着重用户体验意味着不同的队伍和个体需要被咨询和告知。从本质上说,用户体验驱动的数据和分析法再平衡了灵活性与包含之间的决策权关系。
该公司把其人员、加工和技术紧紧围绕用户体验决策权——并且可测量地证明了结果非常惊人。该公司获取了十倍多的有效反馈,通过所有形式的社交媒体和使用案例监测,并且较于典型的一年制时间框架,在三个月内,以和此前相同的产品研发效力和比以前少一半的产品研发费用,开发出下一个更好的版本。
随着组织决定越发受到数据驱动,高层管理者需要取保决策权同样也受到数据驱动。这解释了为什么那么多组织把数据管理设为战略和组织上的优先对象。与其采取更多的传统IT管理(为IT系统管理寻求创造更强的问责制),数据管理模式认识到数据对于管理是”任务关键型“资产。
数据是怎样进行共享的(包容性)?且组织是如何高效的利用数据的(灵活性)?对于那些数据管理模式问题的解答能够在数据驱动的决策权的创新应用中发现。数据管理方式的未来就在决策权的未来手上,而决策权的未来也在数据管理方式的未来手上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31