什么才是真正的大数据征信
随着国家推动社会信用体系建设的步伐不断加快,大数据征信的概念得到广泛传播,已被越来越多的公众所认知。大数据征信代表着未来征信业的发展方向,将深刻改变商业交易模式,成为支撑市场经济健康快速发展的基础性产业。
大数据征信前景广阔,在资本市场、商务合作和终端消费市场,征信产品的需求已经显现出来,金融机构、企业和消费者对通过第三方大数据征信机构在经济活动中考察合作和交易对方的信用状况抱有很大的期待。
目前国内注册成立的征信机构无一例外将发展目标锁定在了大数据征信上。大数据征信首要的工作就是信用信息数据库建设,但目前已建成信用信息数据库的征信机构并不多,这主要是因为我国征信业刚刚起步,发展时间并不长,根据发达国家的经验,建成征信数据库至少需要三到五年的时间。数据库建设滞后导致市场上征信产品和服务并不丰富,这也是我国征信业发展必须要经历的阶段。
然而,一些征信公司在利益的驱使下,在没有建成大数据征信数据库的情况下,却打着大数据征信的幌子,从事信用评估或信用评级的工作,这种行为可谓是欺世盗名,对我国刚刚起步的征信市场也是极大的伤害。
为了杜绝这种欺世盗名行为,就很有必要正本清源。在鱼目混珠的网络世界,多一双辨别真假的慧眼更是很有必要。本文11315征信专员将为你讲解什么是真正的大数据征信,让你对大数据征信有一个充分的认识,轻松识破假冒的大数据征信。
一、大数据征信不仅数据庞大,互联网信息采集技术是关键。
说起大数据征信给人的第一印象就是数据规模庞大。拿11315全国企业征信系统来说,目前为国内 6000余万家信息主体建立了信用档案,录入了包括政府监管信息、行业评价信息、媒体评价信息、金融信贷信息、企业运营信息和市场反馈信息六大方面的信用信息十亿多条。
但这不重要,仅从数据量上来说,传统的信用评级公司经过数据的长年积累也可能做到。关键在于数据的采集上,大数据征信数据库更多地依靠技术能力聚合有关企业或个人有效信用数据,并录入基础数据库,纳入相关企业或个人的信用档案中。
正是通过互联网技术,才能让信用信息数据库迅速汇集、冲洗出鲜活的信用信息,11315所采用的正是这种技术。如果一些征信公司没有数据库,或者数据库里只有一些企业的基本信息,就标榜自己是大数据征信,就值得警惕了,很可能你遇到的就是虚假的大数据征信。
二、数据库及时录入很重要,实现企业信用的动态评估。
除了能够通过互联网技术全面采集企业或个人的信用信息外,大数据的另一个显著特征是,对及时捕捉来的数据进行适时分析,由基础数据库纳入数据评估系统。
比如当前一家企业的信用评级良好,下一刻在质监部门或新闻媒体就有可能发布关于这家企业的负面信息,大数据征信数据征信就要能够实时捕捉到这些信息,并通过系统内置的数据计算模型,对数据进行交互处理,对企业的信用状况进行重新评估更新,让公众能够及时了解到企业最新的信用信息,也就是说在大数据征信机制下,企业或个人的征信状况是动态变化的,比如11315全国企业征信系统通过互联网技术采集企业信用数据,每每分钟就能对系统数据进行一次更新,这就是大数据征信的独特魅力。
传统征信机构的普遍做法是,征信公司向企业发出资料清单,依据企业提交的信息资料、辅以对企业短时间的财务分析,对企业进行信用评估,并标注有效期一年、两年、三年,这和大数据征信机制完全相悖。
还有一些征信机构只要交钱就能给颁发信用评级证书或牌匾,信用评级证书和牌匾也是五花八门,企业需要什么样的证书和牌匾,就给发什么样的证书和牌匾,信用等级能评多高,也很随意,或者完全是企业交多少钱就给什么样的等级。就如前段时间被民政部曝光的山寨协会“中国产品质量协会”就是这么干的,“21315中国产品质量协会贩卖虚假牌匾杂货铺诈骗”也被多家新闻媒体曝光。
三、通过统一数学模型进行信用评级。
传统征信更多地是依靠人为的、主观的因素来评级,通过分析师或信用评估从业者对企业提报的资料经过分析而做出企业的信用评定。而大数据征信面对的是海量的企业或个人的信用数据,依靠人工来分析评级很不现实,大数据征信下的信用评级是通过系统内统一的数学计算模型,对企业或个人的信用信息进行计算,并得出相关企业或个人的信用分值和信用等级。大数据征信所采用统一数学模型的信用评级,更具客观性,效率也大大提高。
四、实时出具信用报告。
通过统一数学模型对企业或个人进行信用评级的同时,征信系统能够实时为企业和个人出具信用报告。比如说,传统征信模式通过调查、资料分析和信用评级,要出一份信用报告,至少需要2周或更长的时间,而大数据征信通过系统广泛采集企业的信用信息,可以做到信用报告直接在线下载打印,这是传统的征信模式所无法比拟的。
如果你对大数据征信还比较陌生的话,通过以上几个特征,对大数据征信就会有一个比较清晰的认识,什么是传统征信,什么是大数据征信,打着大数据征信的幌子来欺世盗名的,就会很容易识破,不至于上当受骗。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21