什么才是真正的大数据征信
随着国家推动社会信用体系建设的步伐不断加快,大数据征信的概念得到广泛传播,已被越来越多的公众所认知。大数据征信代表着未来征信业的发展方向,将深刻改变商业交易模式,成为支撑市场经济健康快速发展的基础性产业。
大数据征信前景广阔,在资本市场、商务合作和终端消费市场,征信产品的需求已经显现出来,金融机构、企业和消费者对通过第三方大数据征信机构在经济活动中考察合作和交易对方的信用状况抱有很大的期待。
目前国内注册成立的征信机构无一例外将发展目标锁定在了大数据征信上。大数据征信首要的工作就是信用信息数据库建设,但目前已建成信用信息数据库的征信机构并不多,这主要是因为我国征信业刚刚起步,发展时间并不长,根据发达国家的经验,建成征信数据库至少需要三到五年的时间。数据库建设滞后导致市场上征信产品和服务并不丰富,这也是我国征信业发展必须要经历的阶段。
然而,一些征信公司在利益的驱使下,在没有建成大数据征信数据库的情况下,却打着大数据征信的幌子,从事信用评估或信用评级的工作,这种行为可谓是欺世盗名,对我国刚刚起步的征信市场也是极大的伤害。
为了杜绝这种欺世盗名行为,就很有必要正本清源。在鱼目混珠的网络世界,多一双辨别真假的慧眼更是很有必要。本文11315征信专员将为你讲解什么是真正的大数据征信,让你对大数据征信有一个充分的认识,轻松识破假冒的大数据征信。
一、大数据征信不仅数据庞大,互联网信息采集技术是关键。
说起大数据征信给人的第一印象就是数据规模庞大。拿11315全国企业征信系统来说,目前为国内 6000余万家信息主体建立了信用档案,录入了包括政府监管信息、行业评价信息、媒体评价信息、金融信贷信息、企业运营信息和市场反馈信息六大方面的信用信息十亿多条。
但这不重要,仅从数据量上来说,传统的信用评级公司经过数据的长年积累也可能做到。关键在于数据的采集上,大数据征信数据库更多地依靠技术能力聚合有关企业或个人有效信用数据,并录入基础数据库,纳入相关企业或个人的信用档案中。
正是通过互联网技术,才能让信用信息数据库迅速汇集、冲洗出鲜活的信用信息,11315所采用的正是这种技术。如果一些征信公司没有数据库,或者数据库里只有一些企业的基本信息,就标榜自己是大数据征信,就值得警惕了,很可能你遇到的就是虚假的大数据征信。
二、数据库及时录入很重要,实现企业信用的动态评估。
除了能够通过互联网技术全面采集企业或个人的信用信息外,大数据的另一个显著特征是,对及时捕捉来的数据进行适时分析,由基础数据库纳入数据评估系统。
比如当前一家企业的信用评级良好,下一刻在质监部门或新闻媒体就有可能发布关于这家企业的负面信息,大数据征信数据征信就要能够实时捕捉到这些信息,并通过系统内置的数据计算模型,对数据进行交互处理,对企业的信用状况进行重新评估更新,让公众能够及时了解到企业最新的信用信息,也就是说在大数据征信机制下,企业或个人的征信状况是动态变化的,比如11315全国企业征信系统通过互联网技术采集企业信用数据,每每分钟就能对系统数据进行一次更新,这就是大数据征信的独特魅力。
传统征信机构的普遍做法是,征信公司向企业发出资料清单,依据企业提交的信息资料、辅以对企业短时间的财务分析,对企业进行信用评估,并标注有效期一年、两年、三年,这和大数据征信机制完全相悖。
还有一些征信机构只要交钱就能给颁发信用评级证书或牌匾,信用评级证书和牌匾也是五花八门,企业需要什么样的证书和牌匾,就给发什么样的证书和牌匾,信用等级能评多高,也很随意,或者完全是企业交多少钱就给什么样的等级。就如前段时间被民政部曝光的山寨协会“中国产品质量协会”就是这么干的,“21315中国产品质量协会贩卖虚假牌匾杂货铺诈骗”也被多家新闻媒体曝光。
三、通过统一数学模型进行信用评级。
传统征信更多地是依靠人为的、主观的因素来评级,通过分析师或信用评估从业者对企业提报的资料经过分析而做出企业的信用评定。而大数据征信面对的是海量的企业或个人的信用数据,依靠人工来分析评级很不现实,大数据征信下的信用评级是通过系统内统一的数学计算模型,对企业或个人的信用信息进行计算,并得出相关企业或个人的信用分值和信用等级。大数据征信所采用统一数学模型的信用评级,更具客观性,效率也大大提高。
四、实时出具信用报告。
通过统一数学模型对企业或个人进行信用评级的同时,征信系统能够实时为企业和个人出具信用报告。比如说,传统征信模式通过调查、资料分析和信用评级,要出一份信用报告,至少需要2周或更长的时间,而大数据征信通过系统广泛采集企业的信用信息,可以做到信用报告直接在线下载打印,这是传统的征信模式所无法比拟的。
如果你对大数据征信还比较陌生的话,通过以上几个特征,对大数据征信就会有一个比较清晰的认识,什么是传统征信,什么是大数据征信,打着大数据征信的幌子来欺世盗名的,就会很容易识破,不至于上当受骗。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02