机器学习算法的随机数据生成
在学习机器学习算法的过程中,我们经常需要数据来验证算法,调试参数。但是找到一组十分合适某种特定算法类型的数据样本却不那么容易。还好numpy, scikit-learn都提供了随机数据生成的功能,我们可以自己生成适合某一种模型的数据,用随机数据来做清洗,归一化,转换,然后选择模型与算法做拟合和预测。下面对scikit-learn和numpy生成数据样本的方法做一个总结。
1. numpy随机数据生成API
numpy比较适合用来生产一些简单的抽样数据。API都在random类中,常见的API有:
1) rand(d0, d1, …, dn) 用来生成d0xd1x…dn维的数组。数组的值在[0,1]之间
例如:np.random.rand(3,2,2),输出如下3x2x2的数组
array([[[ 0.49042678, 0.60643763],
[ 0.18370487, 0.10836908]],
[[ 0.38269728, 0.66130293],
[ 0.5775944 , 0.52354981]],
[[ 0.71705929, 0.89453574],
[ 0.36245334, 0.37545211]]])
2) randn((d0, d1, …, dn), 也是用来生成d0xd1x…dn维的数组。不过数组的值服从N(0,1)的标准正态分布。
例如:np.random.randn(3,2),输出如下3×2的数组,这些值是N(0,1)的抽样数据。
array([[-0.5889483 , -0.34054626],
[-2.03094528, -0.21205145],
[-0.20804811, -0.97289898]])
如果需要服���$N(\mu,\sigma^2)$的正态分布,只需要在randn上每个生成的值x上做变换$\sigma x + \mu $即可,例如:
例如:2*np.random.randn(3,2) + 1,输出如下3×2的数组,这些值是N(1,4)的抽样数据。
array([[ 2.32910328, -0.677016 ],
[-0.09049511, 1.04687598],
[ 2.13493001, 3.30025852]])
3)randint(low[, high, size]),生成随机的大小为size的数据,size可以为整数,为矩阵维数,或者张量的维数。值位于半开区间 [low, high)。
例如:np.random.randint(3, size=[2,3,4])返回维数维2x3x4的数据。取值范围为最大值为3的整数。
array([[[2, 1, 2, 1],
[0, 1, 2, 1],
[2, 1, 0, 2]],
[[0, 1, 0, 0],
[1, 1, 2, 1],
[1, 0, 1, 2]]])
再比如: np.random.randint(3, 6, size=[2,3]) 返回维数为2×3的数据。取值范围为[3,6).
array([[4, 5, 3],
[3, 4, 5]])
4) random_integers(low[, high, size]),和上面的randint类似,区别在与取值范围是闭区间[low, high]。
5) random_sample([size]), 返回随机的浮点数,在半开区间 [0.0, 1.0)。如果是其他区间[a,b),可以加以转换(b – a) * random_sample([size]) + a
例如: (5-2)*np.random.random_sample(3)+2 返回[2,5)之间的3个随机数。
array([ 2.87037573, 4.33790491, 2.1662832 ])
2. scikit-learn随机数据生成API介绍
scikit-learn生成随机数据的API都在datasets类之中,和numpy比起来,可以用来生成适合特定机器学习模型的数据。常用的API有:
1) 用make_regression 生成回归模型的数据
2) 用make_hastie_10_2,make_classification或者make_multilabel_classification生成分类模型数据
3) 用make_blobs生成聚类模型数据
4) 用make_gaussian_quantiles生成分组多维正态分布的数据
3. scikit-learn随机数据生成实例
3.1 回归模型随机数据
这里我们使用make_regression生成回归模型数据。几个关键参数有n_samples(生成样本数), n_features(样本特征数),noise(样本随机噪音)和coef(是否返回回归系数)。例子代码如下:
输出的图如下:
3.2 分类模型随机数据
这里我们用make_classification生成三元分类模型数据。几个关键参数有n_samples(生成样本数), n_features(样本特征数), n_redundant(冗余特征数)和n_classes(输出的类别数),例子代码如下:
输出的图如下:
3.3 聚类模型随机数据
这里我们用make_blobs生成聚类模型数据。几个关键参数有n_samples(生成样本数), n_features(样本特征数),centers(簇中心的个数或者自定义的簇中心)和cluster_std(簇数据方差,代表簇的聚合程度)。例子如下:
输出的图如下:
3.4 分组正态分布混合数据
我们用make_gaussian_quantiles生成分组多维正态分布的数据。几个关键参数有n_samples(生成样本数), n_features(正态分布的维数),mean(特征均值), cov(样本协方差的系数), n_classes(数据在正态分布中按分位数分配的组数)。 例子如下:
输出图如下
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21