如何才能将大数据真正应用起来
在这个信息爆炸的时代,每天都有大量各种各样的信息数据产生,怎么发掘这些海量数据的价值成为所有人关注的重点。因此,上至政府部门,下至平头百姓,各行各业对大数据的讨论越来越激烈,大家都在探寻大数据的奥妙和价值。
大数据说起来比较玄乎,实际上已经慢慢地渗透到我们生活的方方面面。以现在越来越普及的网络购物为例,我们在某购物网站中搜索了某些商品,再次登录该网站,甚至是其他的网站,往往就会看到系统自动推荐的与上次搜索相关的商品信息。这就是购物网站应用大数据分析,摸清了用户的消费习惯,精准推送用户可能感兴趣的产品,以更有效地促进用户消费。这是个人购物行为,再更进一步,每年各大购物网站都会发布一些购物指南,得出了一些非常有趣的结论,比如哪个地区男士为女士购买的商品最多;哪个年龄段的网络消费能力更强;同类产品,哪个品牌在某个区域的销量更好等等,这些都是通过大数据分析得到。目前,政府、医疗、互联网等等行业都已经开始了大数据应用。
大数据与安防
虽然大数据在不少行业都已经开始得到应用,并取得了非常不错的效果,但是就安防行业来说,大数据应用之路才刚刚开启。在安防领域,主要的数据来源是视频,与其他行业结构化的数据不一样,视频是一种非结构化的数据,不能直接被计算机进行处理或分析。因此,安防要进行大数据应用,首先就要采用智能分析技术将非结构化的视频数据转换成计算机能够识别和处理的结构化信息,即将视频中包含的各种信息(主要是运动目标及其特征)提取出来转成文字描述,这样才能通过计算机来对这些视频进行搜索、比对、分析等。但是,早期安防行业并没有有效的技术手段来展开这项工作。
智能分析技术其实很早就已经应用于安防行业,只不过受限于智能分析算法本身以及摄像机的硬件性能,早期主要是通过智能分析服务器来实现视频图像的智能识别和分析,但这种方式存在一个致命的缺陷——成本过高。一台刀片式服务器价格在六七万左右,而一台服务器只能识别七、八路1080P高清监控录像。以一个中等规模的城市为例,整体建设可能有十来万个监控点,即使只做2000路智能分析,也要两百多台服务器,这个成本是相当可观的。除了服务器的设备成本之外,还有服务器的能耗、所占场地、数据中心的网络设备、后期维护等成本,这些成本不比购买服务器的成本低。正是服务器这种智能分析模式因为成本过高无法规模化应用,所以视频信息无法大规模转换成结构化的数据,安防大数据也就一直无法落到实地。
随着智能分析算法的逐步成熟,以及摄像机硬件性能的不断提升,越来越多企业开始考虑将更多智能识别算法前置到摄像机中,毕竟摄像机本身的成本增加是可以预见的。在安防业内,以科达为代表的感知型摄像机这类智能摄像机的推出,比较经济有效地解决了视频数据结构化的问题,为安防大数据应用打下了基础。
除了视频数据的非结构化外,与其他行业相比,安防行业的大数据还有一些典型特征,这些特征对存储系统提出了更高的要求。比如视频的数据量特别大,且还在不断增多,就要求存储系统能够很方便地扩容;视频的价值密度低,且是实时的,连续的,稍纵即逝的,不容丢失,就要求存储的可靠性要高;一个PB级的存储系统硬盘就有几千甚至几万块,这么多硬盘可能每天都会有损坏,如果一损坏就要更换会非常麻烦,这就对存储提出了可维护性的要求;既然是大数据视频,说明会有各种各样的用户会去访问这些视频数据,所以对并发访问会有更高要求等等。要满足上述要求,传统的存储方式已经无能为力,只有云存储才能支撑。
一段视频经过智能摄像机的分析提取以后,形成了原始视频、视频里面每个运动目标的图片以及每个运动目标的语义文字描述三类数据,其中图片和视频是非结构化数据,一般存于云存储系统中,而语义的文字描述这类结构化数据存在于后端的大数据数据库中,每一条文字的描述对应相应的目标图片和视频。在完成了视频的结构化处理,以及三类数据的存储之后,应用就是接下来的关键,否则存储的数据也没有价值。
尽管在不同的垂直行业,安防大数据的应用会有一定差异,但从目前应用最为成熟的公安、交通等行业来看,大数据应用大致可以归结为检索、分析研判、实时布控和调度三大类。
第一类检索,在实现视频结构化之前,查找、检索视频只能靠人,而将视频结构化之后,利用后端的大数据检索系统,就能很方便地搜出相对应的文字、图片以及视频。比如要查找某一时间段经过某个路段一个穿蓝色衣服的可疑人员,用户只需要输入“蓝色衣服”,就能找出该时间段内所有穿蓝色衣服的人的图片,点击图片就可以获取这个人经过这个路段的视频。
第二类分析研判,比如通过车辆的多点碰撞,看是否有哪辆车在几个路口都出现过,从而帮助公安发现嫌疑车辆。
第三类是实时布控和调度,比如,公安知道一个嫌疑人住在某个小区,并且嫌疑人照片已经存在于系统后台,就可以通过安装在门口的感知型摄像机抓拍每个进出小区人员的人脸特征,并立刻送到后台去比对,一旦发现某个人员的外貌特征与目标嫌疑人比较相似,系统就会马上报警,公安人员即可指挥调度实施现场抓捕。当然,要结合行业需求实现这三大类应用,需要企业深入研究行业用户的需求,对行业需求的精准把握是大数据应用的关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31