企业向机器学习转型所需遵循的五大步骤
导读:
如今,机器学习技术高居新兴科技技术成熟度曲线(Hype Cycle for EmergingTechnologies)的顶点,这意味着,它已经足够成熟,可以激发更加广泛的兴趣了。换言之,你的竞争对手们也在投资机器学习呢。
近九成企业已经不同程度地用上了机器学习,大部分依旧处在战略开发或试水阶段。然而,机器学习的潜力仍未完全释放。在大部分企业,很多决策仍需要人类插手。只有8%的受访者表示,其机器学习战略已经相当或高度完备。
在机器学习的普及过程中,一个常见的障碍就是保障数据质量。劣质数据会导致机器做出劣质决策,从而增加风险。
原文翻译:
假如你想修个新房,你不但得购买新建材,还得雇佣熟练的建筑工人,才能把房子修起来。首席信息官们(CIO)要想推行机器学习技术,从而在没有人类直接干预的情况下,对业绩加以分析与提升,他们也得遵循同样的规则。企业IT云服务公司ServiceNow的一项最新调查显示,大多数CIO都因为缺乏所需的人才、数据质量与预算,而无法充分利用这种技术。若你的企业即将踏上机器学习的征程,那么,要让投资物有所值,你必须遵循五大步骤。
这五大措施应尽快采取,因为说不定,大家期盼已久的机器学习时代很快就要降临了。效仿人类智能的机器虽然被炒得热火朝天,但计算机科学早已经迎头赶上。如今,机器学习技术高居新兴科技技术成熟度曲线(Hype Cycle for EmergingTechnologies)的顶点,这意味着,它已经足够成熟,可以激发更加广泛的兴趣了。换言之,你的竞争对手们也在投资机器学习呢。
最近,《全球CIO观点调查》(Global CIO Point of View Survey)向500名CIO发出了问卷。调查结果显示,企业都在为这种变革性的技术的普及摩拳擦掌,以实现自动化决策。近九成企业已经不同程度地用上了机器学习,大部分依旧处在战略开发或试水阶段。然而,机器学习的潜力仍未完全释放。在大部分企业,很多决策仍需要人类插手。只有8%的受访者表示,其机器学习战略已经相当或高度完备,相比之下,认为自己企业物联网战略相当或高度完备的占到35%,数据分析战略对应的比例则达65%。
根据麦肯锡(McKinsey)的一项调查,为实现机器学习方面的数据与分析目标,最重要的挑战有这样三个:
1)支持数据与分析活动的企业架构;
2)行之有效的技术基础设施;
3)管理层的参与。该研究还宣称,能够有效驾驭这三点的企业将能创造出显著的价值,并实现自身的差异化;办不到的企业,则会日益陷入劣势地位。
要捕获更大的价值,企业要做的不仅仅是投资于技术。对企业架构或流程的改变也必不可少,这其中包括对待人才的态度、IT管理与风险管理。要取得进步,企业必须遵循以下五个步骤:
一、改进数据质量
在机器学习的普及过程中,一个常见的障碍就是保障数据质量。劣质数据会导致机器做出劣质决策,从而增加风险。CIO要考虑实施恰当的解决方案,简化数据维护,从而加速向机器学习转型。第一步就是整合冗余或预制的IT工具,将它们变成单一的数据模型。
二、树立价值实现方式
将所有技术目标的商业价值明确表述出来,继而确定这些目标的最佳实现方式。这包括审视已有流程,找到最能得益于自动化的非结构化工作模式。知道了碎片化数据都在哪里,你也就知道了如何用自动化实现生产效率的提升。
三、创造最优客户体验
机器学习带来的自动化可以促进运营效率,但不要忘了,它也能(在不牺牲准确度的前提下)加速决策,改进客户体验,从而提高投资回报率。先设想一下你想创造的客户体验,然后在商业流程之中,找到最能提升客户体验的元素,加以重点投资。机器学习使企业或机构能够针对每一位顾客,度身定制相应的广告、呼叫中心的互动,乃至产品或服务,以及预测顾客接下去的需求。
四、设定指标并加以衡量
CIO们深知机器学习的价值,但高管团队和董事会其他成员可能就不清楚了。因此,在着手实施之前,CIO们必须树立预期,设置成功指标,并准备好充分的商业依据,在申请款项时,随时呈递给领导层。在实施机器学习技术、收获智能自动化的益处的同时,这些衡量指标也得随时调整
五、理解企业文化将受到的影响
在企业引入机器学习的同时,雇员的角色也将发生改变,这就需要CIO们调整雇佣与培训过程。这个不难,因为它所需的技能组合,包括数据科学、工程学、数学和批判性思维在内,就是云时代的必备技能组合。这种转型很可能给某些雇员造成不适,因此,请务必使机器学习的价值转化到他们的日常工作之中。机器并未接管企业,它们将雇员从繁琐的手动操作中解放了出来,使员工专注于更加战略性的项目。
但这种不适的感受,CIO们也有可能面临。他们的角色也需要不断演变,从维持技术层面的正常运转,保障企业运营,到以高管的身份与企业各个层面广泛互动,因此,其战略重要性也将迈上新的台阶。
企业要实现机器学习的投资回报,就离不开规划与严格的贯彻执行——同时参照技术转型的速度、其对雇员日常工作的影响,对雇员做出相应的调整。遵循上述五个步骤,这一转型就会格外顺畅。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16