企业向机器学习转型所需遵循的五大步骤
导读:
如今,机器学习技术高居新兴科技技术成熟度曲线(Hype Cycle for EmergingTechnologies)的顶点,这意味着,它已经足够成熟,可以激发更加广泛的兴趣了。换言之,你的竞争对手们也在投资机器学习呢。
近九成企业已经不同程度地用上了机器学习,大部分依旧处在战略开发或试水阶段。然而,机器学习的潜力仍未完全释放。在大部分企业,很多决策仍需要人类插手。只有8%的受访者表示,其机器学习战略已经相当或高度完备。
在机器学习的普及过程中,一个常见的障碍就是保障数据质量。劣质数据会导致机器做出劣质决策,从而增加风险。
原文翻译:
假如你想修个新房,你不但得购买新建材,还得雇佣熟练的建筑工人,才能把房子修起来。首席信息官们(CIO)要想推行机器学习技术,从而在没有人类直接干预的情况下,对业绩加以分析与提升,他们也得遵循同样的规则。企业IT云服务公司ServiceNow的一项最新调查显示,大多数CIO都因为缺乏所需的人才、数据质量与预算,而无法充分利用这种技术。若你的企业即将踏上机器学习的征程,那么,要让投资物有所值,你必须遵循五大步骤。
这五大措施应尽快采取,因为说不定,大家期盼已久的机器学习时代很快就要降临了。效仿人类智能的机器虽然被炒得热火朝天,但计算机科学早已经迎头赶上。如今,机器学习技术高居新兴科技技术成熟度曲线(Hype Cycle for EmergingTechnologies)的顶点,这意味着,它已经足够成熟,可以激发更加广泛的兴趣了。换言之,你的竞争对手们也在投资机器学习呢。
最近,《全球CIO观点调查》(Global CIO Point of View Survey)向500名CIO发出了问卷。调查结果显示,企业都在为这种变革性的技术的普及摩拳擦掌,以实现自动化决策。近九成企业已经不同程度地用上了机器学习,大部分依旧处在战略开发或试水阶段。然而,机器学习的潜力仍未完全释放。在大部分企业,很多决策仍需要人类插手。只有8%的受访者表示,其机器学习战略已经相当或高度完备,相比之下,认为自己企业物联网战略相当或高度完备的占到35%,数据分析战略对应的比例则达65%。
根据麦肯锡(McKinsey)的一项调查,为实现机器学习方面的数据与分析目标,最重要的挑战有这样三个:
1)支持数据与分析活动的企业架构;
2)行之有效的技术基础设施;
3)管理层的参与。该研究还宣称,能够有效驾驭这三点的企业将能创造出显著的价值,并实现自身的差异化;办不到的企业,则会日益陷入劣势地位。
要捕获更大的价值,企业要做的不仅仅是投资于技术。对企业架构或流程的改变也必不可少,这其中包括对待人才的态度、IT管理与风险管理。要取得进步,企业必须遵循以下五个步骤:
一、改进数据质量
在机器学习的普及过程中,一个常见的障碍就是保障数据质量。劣质数据会导致机器做出劣质决策,从而增加风险。CIO要考虑实施恰当的解决方案,简化数据维护,从而加速向机器学习转型。第一步就是整合冗余或预制的IT工具,将它们变成单一的数据模型。
二、树立价值实现方式
将所有技术目标的商业价值明确表述出来,继而确定这些目标的最佳实现方式。这包括审视已有流程,找到最能得益于自动化的非结构化工作模式。知道了碎片化数据都在哪里,你也就知道了如何用自动化实现生产效率的提升。
三、创造最优客户体验
机器学习带来的自动化可以促进运营效率,但不要忘了,它也能(在不牺牲准确度的前提下)加速决策,改进客户体验,从而提高投资回报率。先设想一下你想创造的客户体验,然后在商业流程之中,找到最能提升客户体验的元素,加以重点投资。机器学习使企业或机构能够针对每一位顾客,度身定制相应的广告、呼叫中心的互动,乃至产品或服务,以及预测顾客接下去的需求。
四、设定指标并加以衡量
CIO们深知机器学习的价值,但高管团队和董事会其他成员可能就不清楚了。因此,在着手实施之前,CIO们必须树立预期,设置成功指标,并准备好充分的商业依据,在申请款项时,随时呈递给领导层。在实施机器学习技术、收获智能自动化的益处的同时,这些衡量指标也得随时调整
五、理解企业文化将受到的影响
在企业引入机器学习的同时,雇员的角色也将发生改变,这就需要CIO们调整雇佣与培训过程。这个不难,因为它所需的技能组合,包括数据科学、工程学、数学和批判性思维在内,就是云时代的必备技能组合。这种转型很可能给某些雇员造成不适,因此,请务必使机器学习的价值转化到他们的日常工作之中。机器并未接管企业,它们将雇员从繁琐的手动操作中解放了出来,使员工专注于更加战略性的项目。
但这种不适的感受,CIO们也有可能面临。他们的角色也需要不断演变,从维持技术层面的正常运转,保障企业运营,到以高管的身份与企业各个层面广泛互动,因此,其战略重要性也将迈上新的台阶。
企业要实现机器学习的投资回报,就离不开规划与严格的贯彻执行——同时参照技术转型的速度、其对雇员日常工作的影响,对雇员做出相应的调整。遵循上述五个步骤,这一转型就会格外顺畅。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04