中国普天构建“智慧”4G业务大数据支撑体系
随着4G和移动互联网时代的到来,中国移动互联网业逐渐步入大数据时代,同时也开启了行业发展的“数字金矿”。中国普天所属企业东信北邮信息技术有限公司(简称普天东信北邮)立足于电信、移动互联网领域的大数据现网实践,应用数据采集、数据加工、分布式计算、数据挖掘、可视化展示等技术,打造直接具备生产能力、实时能力、决策能力、开放能力的智慧型BI产品体系,释放大数据价值。
在4G环境下,业务的典型特征是容量大、速度快、实时性视频传输稳定,更适合移动互联网时代用户的业务需求,同时也对流量管控、流量服务、用户行为分析等精准化运营提出更高要求。针对这些特征与趋势,普天东信北邮提出“一个平台,四个体系”的4G业务大数据支撑体系管理理念,提供以大数据为基础的智能、灵活、开放的运营支撑平台,实现4G业务数据采集、存储、计算,能有效支撑上层应用。
其中,“一个平台”即指打造海量数据采集、计算、管理、应用支撑的大数据平台,实现决策支撑和数据生产。整合运营商通信、计费、云存储等基础能力和分散在传统业务中认证、适配等业务能力,以及用户统计级行为数据,形成运营商独有的产业平台,并将能力和数据开放,实现电信产品和服务的延伸。
“四个体系”则包括构建基于用户共享的用户行为分析体系;构建个性、实时、一体化流量服务体系;基于大数据分析,实现流量智能管控支撑体系;建立“大数据、超细分、微营销”营销服务支撑体系。
构建基于用户共享的用户行为分析体系
流量共享是4G业务主要特征之一,由此衍生多用户共享、多终端共享的群体性行为,且流量使用者和购买者出现隔离。东信北邮针对该行为特点,建立多终端分析体系、购买者和使用者协同分析体系。其中,多终端分析体系引入UA信息,弥补以IMEI为核心的手机终端分析体系的不足,建立全终端分析体系,满足4G和移动互联网时代多终端接入的需求。购买者和使用者协同分析体系则基于用户真实使用终端,通过对用户位置、时间、交往圈、UA等信息多层筛选,还原真实使用者号码,解决特定产品(购买者和使用者可分离)营销分析难题,形成了基于购买者和使用者协同分析的创新营销分析模式。
构建个性、实时、一体化流量服务体系
构建个性、实时、一体化流量服务体系,有效解决用户流量类投诉和咨询,提升4G和移动互联网时代用户体验与满意度。
东信北邮针对流量投诉场景,采用“三步走”策略,向客服人员提供套餐使用情况、流量结构分析和流量清单查询,逐层剖析流量使用情况,解决流量投诉和质疑。
基于大数据分析,实现流量智能管控支撑体系
基于用户、业务等分析成果提供PCC智能策略支撑能力,实现互联网智能化QoS运营,力求资源利用率最大化,促进收益最大化。
从精准营销平台、经营分析等应用系统提取分析数据,再结合闭环评估的结果,生成针对流量的营销服务策略、统一交互策略(如PCC流量管控策略)和运营保障策略(如网络优化策略),动态支撑各营销渠道、网络侧PCRF、OSS域网络平台的执行,最终对执行效果和策略进行评估,更新策略中心,实现智能、闭环的策略管理。
建立“大数据、超细分、微营销”营销服务支撑体系
随着4G时代和移动互联网时代的到来,新业务、新产品层出不穷,用户的需求表现出越来越强的个性化特征,未来移动互联网的发展越来越取决于用户需求拉动。而普天东信北邮4G业务大数据支撑体系能够助力用户实现自助分析、智能精准策略匹配、智能化精准化流程以及服务能力整合与输出。即以超细分的用户标签为基础,实现用户群的自助式多维分析和需求探索,培养业务人员自助分析习惯和用户洞察能力;打造策略匹配中心,实现“客户-产品”和“产品-客户”的双向自动超细分的精准策略匹配;通过进一步完善营销规则管理,加强渠道协同及渠道触点的统一管理,既提升营销效率,又促成对用户的合理接触,同时,系统具备数据开放的能力,并向各外部平台提供服务能力。
同时,普天大数据产品的建设基于“半定制化”的理念,具备个性化服务、精细化营销、数据化运营、科学化管理、商业化分享等特点。截至目前,普天东信北邮大数据产品累计服务6.2亿名用户,为4.8亿名用户提供个性化推荐服务,为3.4亿名用户提供精准营销服务。4G业务大数据支撑体系也已在多地落地商用,其中流量经营方案助力浙江移动获得“中国移动2012年流量经营集团竞赛”第一名,并开拓了4G和移动互联网时代产品多终端分析、流量共享创新分析模式,作为优秀模型在全集团推广。未来,普天东信北邮将继续与运营商伙伴开展深入合作,研究并应用大数据关键技术,对移动通信信息服务领域持续生成的业务数据、用户数据和网络数据进行分析挖掘,并将产生的结果应用于业务和支撑系统中,实现对用户行为数据的深入分析和挖掘。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21