别用大数据去分析销售,去见你的客户吧
在业务科技化的年代,许多B2B (Business-to-Business)型态的企业逐渐改变资讯收集的方式,不再以传统的面对面访谈为主,反而著重于大型数据库的建立与分析,作为市场开发及关系建立的依据。
大型数据库(Big Data)是相当重要的存在,若有大型数据库作为市场开发及关系建立的依据,企业间的电子商务将更容易推动与运行。
然而如此强大的科技产物也并非毫无缺陷,这些论据与图表都确实与销售直接相关且有利于增加营业额,但其数据的收集往往局限于竞争数据、销售活动数据、物业买卖和整体市场趋势,并无法提供更深入的洞察,无法让营销人员了解客户的脑中正在想什么。
这就像情治单位的世界一样,即使有卫星帮忙收集情报,更重要的资讯也只能一对一且面对面地套出来。
若极端一点思考,还是有些公司并没有设立大型数据库,他们仍靠业务部门去收集与管理他们的研究数据,根据2012年CSO Insights针对「数据存取对销售业绩的影响」的考察报告,营销人员平均花24%的时间在为电访做相关资讯搜寻的准备工作,尽管这会占去他们好一部份原本可用于销售的时间。
做量化分析不够,质化分析更能全面探索顾客需求
再想想另一个极端,许多公司拥有相当庞大的大型数据库,大到连解释分析或数据管理都很困难,只能极有限地发挥大型数据库的效用,这问题也在CSO Insights 的同一份考察报告中被点出,将近90% 的业务主管将销售机会的错失归咎于资讯量过载,想从大型数据库中筛选出有价值的分析有时就像大海捞针一般。
对现有客户或潜在客户做定量分析确实有助于销售,但大型数据库并无法描述完整的局面,定性且定量的分析才能更进一步地了解客户,也就是说,着眼点不能只有数字,将论据、图表,还要有更多的陈述文字也加入分析,才能全面地探索顾客的想法及需求。
客户大不同,分析出来的数据真的适用吗?
还有一点也需铭记在心,大型资料库的分析结果可能产生误导,毕竟数据是来自各个不同的客户端,分析所得的趋势有时并不适用于所有客户,也可能会因为客户的资本额造成不同比重的数据来源,如果只以整体趋势套用于所有客户,那就是冒着失去某些客户的风险。
为了解客户,大型资料库的协助面向基本上会包含下述几项指标:
1.策略方向
2.指定需求
3.未列于RFP (Request For Proposal)的潜在需求
4.决策过程及参与人员
5.顾客对己方成果表现及客户服务的印象
6.顾客对竞争公司的印象定性定量地观察客户,才能做好客制化的服务
然而,如果想找出现有客户及潜在客户的上述量化数据,方法只有一种:直接问他。
想了解更核心的价值,就必须藉由更深入的问题,直接探求个别状况,仔细地聆听客户的反应且分析你要的资讯,想当然尔,这不是份简短的问卷可以完事的,免不了要20至60分钟的深度面谈。
当进行深度面谈时,应确保对方为多位该公司的资深主管人员,为的是要确定他们的观点代表了该公司的实际营运方向。谈话内容应包含一系列有组织过的探测性问题,并以开放式问题让对方能描述出实际状况,试着挖掘出对方潜在的反应。
如果,你觉得对方并未??说实话或隐藏了部分事实,应该将相关问题带到较客观的第三方并再次进行面谈及分析。
收集量化数据只完成了一半的工作,接下来就是要从得到的讯息中客制化各个客户的要求,如果获得的讯息不完整或有误,就会事倍功半,因此定性且定量地观察客户们的状况将更有效率地符合对方的需求及改善己方的表现。
不可讳言的,从大型数据库获得的统计数字确实能提供许多销售灵感,但若能辅以实际晤谈或聆听社群媒体,灵活地切换不同的接触方式,才能定性且定量地切中客户的实际需求,提升销售及服务品质的价值。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22