作为Hadoop 曾经的超级粉丝,Joe Brightly承认自己在很多方面非常热爱Hadoop,比如“可以处理PB级别的数据;可以扩展到数千个处理大量计算工作的节点;可以用非常灵活的方式存储和加载数据……”但当他部署Hadoop用于分析的时候,他才意识到它并不是无所不能。
在Quantivo,Joe及其同事已经“探索了许多方法来部署Hadoop用于回答分析型查询”,直到最后,“它变得好像是用一个锤子来建造一个房屋的运动”,这并不是不可能,但是带来了“不必要的痛苦和可笑的低效成本”。
Joe 从五个方面分析了为什么数据分析不使用Hadoop的理由:
1:“Hadoop是一个框架,不是一个解决方案”
他认为在解决大数据分析的问题上人们误认为Hadoop可以立即有效工作,而实际上“对于简单的查询,它是可以的。但对于难一些的分析问题,Hadoop会迅速败下阵来,因为需要你直接开发Map/Reduce代码。出于这个原因,Hadoop更像是J2EE编程环境而不是商业分析解决方案。” 所谓框架意味着你一定要在之上做个性化和业务相关的开发和实现,而这些都需要成本。
2:“Hadoop的子项目Hive和Pig 都不错,但不能逾越其架构的限制。”
Joe提出“Hive 和Pig 都是帮助非专业工程师快速有效使用Hadoop的完善工具,用于把分析查询转换为常用的SQL或Java Map/Reduce 任务,这些任务可以部署在Hadoop环境中。”其中Hive是基于Hadoop的一个数据仓库工具,它可以帮助实现数据汇总、即时查询以及分析存储在Hadoop兼容的文件系统的大型数据集等。而Pig是并行计算的高级数据流语言和执行框架。但作者认为“Hadoop的Map/Reduce框架的一些限制,会导致效率低下,尤其是在节点间通信的情况(这种场合需要排序和连接)。”
3:“部署是很方便,快捷而且免费,但在后期维护和开发方面成本很高 ”
Joe不否认“工程师可以在一个小时内下载、安装并发布一个简单的查询,因此Hadoop是非常受欢迎的。而且作为没有软件成本的开源项目使得它是替代甲骨文和Teradata的一个非常有吸引力的选择。但是就像很多通用开源框架一样,它并不会完全适配你的业务,因此,要想把开源框架业务化,你就不得不投入开发和维护。”Joe 也认为“一旦当你进入维护和开发阶段,Hadoop的真正成本就会变得很明显。”
4:“对于大数据流水线和汇总非常有效,但对应用于特定的分析来说是非常可怕的。”
“Hadoop擅长于大量数据的分析和汇总,或把原始数据转化成对另一个应用程序(如搜索或文本挖掘)更有效的东西‘流水线’- 这是它存在的意义。不过,如果你不知道要分析的问题,或如果你想探索数据的模式,Hadoop的很快变得不可收拾。“这再次回到了业务本身,框架是为业务服务的,即便是大数据的分析和汇总,也难以脱离其数据的业务特性。所以对于特定的分析,仍然不得不在编程和执行MapReduce代码上花很多时间才能达到目的。
5:“性能除了‘不好’的时候都很好。”
“当你需要分析大量的数据时,Hadoop允许你通过数千个节点并行计算,这一点上其潜力很大。但是,并非所有的分析工作可以很容易地进行并行处理,尤其是需要当用户交互驱动的分析。” 所以要想性能很好,你仍然需要专门为自己要解决的问题而设计和优化相应的Hadoop程序,否则会很慢。“因为每个Map/Reduce 任务都要等到之前的工作完成。”所以就像关键路径一样,Hadoop执行性能的快慢会取决于其最慢的MapReduce任务。
Joe最后认为:“Hadoop是一个用来做一些非常复杂的数据分析的杰出工具。但是具有讽刺意味的是,它也是需要大量的编程工作才能得到这些问题的答案。” 这一点不止在数据分析应用方面,它其实反映了目前使用开源框架时候不得不面对的选型平衡问题。当你在选型开源框架或代码的时候,既要考虑清楚它能够帮到你多少,节省多少时间和成本,提高多少效率。也要知道由此而产生多少新增的成本,比如工程师的学习成本、开发和维护成本,以及未来的扩展性,包括如果使用的框架升级了,你和你的团队是否要做相应的升级;甚至还要有安全性方面的考虑,毕竟开源框架的漏洞也是众所周知的。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16