大数据时代,人类生活面临颠覆
对于IT领域来说,最近有很多非常新的概念,比如云计算、物联网,当大家刚刚对这些概念开始有清晰的认知时,又一个全新概念出现了——大数据。什么是大数据?大数据概念究竟指向何方,大数据背后能怎样改变我们生活?会不会给我们的生活和工作带来困扰?
本报与第一财经头脑风暴节目合作探讨大数据时代下的问题。参与这次讨论的嘉宾有大数据概念的提出者、牛津大学教授维克托·迈尔·舍恩伯格,微软亚太研发集团、云计算操作系统首席架构师徐明强,上海市信息化专家、专业委员会专家、复旦大学计算机学院院长王晓阳,科尔尼管理咨询全球合伙人孙健,复旦大学现代哲学研究所所长俞吾金,启明创投合伙人童士豪,著名财经评论员石述思。
1 到底什么是大数据?
维克托:我认为它就是新黄金,我觉得是21世纪最主要的资源,这种资源对社会、企业、个人是否能成功,还是会受苦受难有着很重要的作用。解释一下,虽然此前我们都有数据,可把它们整理在一起然后分析是非常昂贵的,因此我们更多的注意力都放在了实体资源上,就是真正的黄金、金块,像劳动力这种资源。但只有最近我们才靠人的知识、创新来创造财富,更靠前一步,我们可以根据数据来进行,因为数据收集以及分析,成本上升的程度都已经改变了,然后我们的数据就可以达到一定规模。最后,大家所寻求的不管你是一个人、一个公司、一个组织,还是这个社会,无外乎就是这种所谓的新黄金。
为什么最近黄金的价值会跌得很厉害?因为老黄金不值钱了,没有新黄金有价值。
童士豪:我的观点有点类似,第一个是云,第二个是关系,第三个是未来。像刚才维克托先生提到的,因为云时代到了,储存的大量数据的成本非常低,所以能让大家去利用大数据做工作分析,最近由于很多事情的关系,有更多的关系被理解,所以能去预测未来状况。用自己的话说,就是在聆听上花很多时间,看了很多朋友,大家寻找工作机会也好或者是认识对工作有帮助的合作伙伴也好,在这么大的信息里,这么多人把他自己的信息放在上面,就是做了一件事,就是分析。如果你40岁想当创意公司的CEO,你现在20岁,未来20年该怎么规划?这就是非常有意思的一件事。
最后可能有不同的可能性,最后会不会给你找到一个最好的方法,那是自己决定的。可能性放在面前,是机会率最高的,怎么选还是个人决定,所以大数据并没有抹杀个人的意识。
石述思:大数据首先改变的是我们看待世界的方法,它会对这个时代的很多的价值观产生剧烈冲击。举例来说,因为过去我们东方人特别喜欢一个词叫因果,我们认为善有善报、恶有恶报,其实根据交管部门调查的数据,在街头遭遇横祸的人其实跟道德无关,秦桧的寿命是岳飞的两倍半,很多贪官在发现之前,那过的确实是令人无限羡慕的生活。因此,通过大数据我们能用一种全新的观念来看待这个世界,这个世界是有关联来建构的一个新型的关系,只有科技发展到一定水平,才能达到这样的高度。
与此同时,在大数据时代,我们该恪守的底线还是要恪守,但它的确在告诉我们真相,因为科学就是在告诉我们真相。我有一个愿望,就是刚才讲的大数据是新的黄金,我希望它更多地用于社会公益事业,比如,去挽救地震局。这样能避免很多人道主义的灾难和财产的损失,结论是我们过去认为上帝是哲学家或者叫哲人,现在发现他老人家是个老顽童。
2 大数据究竟有没有对各领域的工作和生活产生影响?
王晓阳:大数据影响了智慧。怎么理解呢?大数据本身的概念是数据采集和处理,到了一定的程度使我们的社会也好,管理者也好,都能获益——从城市来讲,一个管理者可以聚集这些数据和处理方式,使得我们能用智慧来管理城市,可以从交通管理、公共卫生,还有其他各个方面来管理,这管理是需要数据,数据产生了智慧,然后反过头来能管理我们的模式。
比如,在公共卫生方面,采集数据到了目前为止其实已经进行了好多年,它的数据采集原来并不是为了大数据来做的,其实是为了一个方便——方便大家去看病。而且你的电子病例等,让你看病更人性化,或者对医生来讲能更快、更方便地去熟悉病情,但在这种情况下,这个数据一旦采集起来使得我们对整个城市的健康状况就能进一步了解,所以,刚才讲的看病的数据其实是原本的用意,大数据一来其实我们就能看见原来看不见的问题。比如一些比较大趋势方面的问题,流行病在哪个地方比较多,或者它怎样流传的,等等。这些事情我们原来是看不到的,这种情况就是大数据对我们的帮助。
徐明强:先举个例子,有一个球和一只蚂蚁,球跟蚂蚁说,做三维世界的事物太好了,你看这条线上有多少个蚂蚁我一眼就看见了,蚂蚁说我真的不信,我得按照这条线爬,爬到头计数器没有出故障我才知道有多少蚂蚁。这能看到三维和二维差了一维,就差了这么大,所以大数据首先它不是数据大,不是同样的数据多了就变成大数据,而是在原有的二维、原有的数据库基础上,再建立一维,给它一个全新的看点。举例说明,你如果在美国,你是欠了债的,除了债主对你感兴趣,还有人会对你感兴趣——如果你欠了债,突然你可以还债了,那么银行会对你感兴趣。在11年前,美国资本一号就发明了一种大数据的应用,它可以找到哪些人是欠了银行的钱、欠了信用卡的钱,然后它就会观察你的消费数据,当它发现你可以开始还的时候,他立刻把你再买过来,从此以后他就吃上了你的利息。资本一号这个公司在2001年时,每个季度的增长率是20%,就是因为它大数据的程序,它可以高命中率地发现这个,它是从哪里找来的数据呢?从沃尔玛、从各种各样的消费数据中找到的。从这个实例我们可以看出,大数据这个原有的数据分析商务智能上加了一层,商务智能不能告诉我们别人将要并且能做什么。
关于我们公司对奥斯卡颁奖的预测,除了对李安的预测没对,其他都对了。其实,我们的预测是把所有人员都做了一个概率,所以做了19个预测对的,是我们放在第一概率的获奖人,下面还有4个是第二概率,所以李安导演我们放在第二概率,我们把他放在后面。
这个预测跟大数据很有关系,首先做大数据需要有IQ,智商,就是说,这个模型要非常好。我们公司做IQ的人叫加戴维·罗斯查尔德,是我们研究部门的一个人。还有其他人,我要讲讲,他这个人的IQ有什么差别?他这个人的IQ用了一个非常简单聚合的模式,除了IQ还有什么呢?智商以后还要有勤商,勤奋的勤。勤商就是说,他非常勤奋地去找数据,要找多种数据,还要找非常实际的数据,所以他在网上、社交网上都有找。有一些找不到的数据,怎么办?他找人做调查,然后找人来做,所以他又有智商,又有勤商,够不够呢?还不够,五年前这种事情做不到,为什么?五年前他要做这样大量的数据的话,自己作为一个研究生的小预算是做不到的,但云计算的出现,他就可以做到了。可以延伸这些数据,用很多处理器来处理,现在他就是用了云做这样一个计算,最后成功了。
孙健:我写的是机会加危险,就是危机。我同意维克托的结论,说这是一个新的金矿,或者有说法叫新的机会,但不要忘记那同时会带来很多危险。如果我们不能很好地去处理大数据的话,特别是像在我们日常工作中接触到的很多中国企业,它们大多数甚至在最基础的数据分析方面还比较落后,这就意味着,我们该怎样很快地过渡到大数据时代去,去面对大数据挑战,如果准备不好,那我很担心,这会像以往很多新技术来了以后的情况,很容易造成很多企业邯郸学步——连走路都还没学会,就要学跳,一下子迈到大数据时代,企业不知道怎样真正地让大数据发挥作用。
在我们的行业里,因为大数据而做了很多产品创新。谈到大数据时代的破坏型创新,实际上也是谈了同样的问题,因为在创新的同时,事实上要推导、颠覆原来的很多东西,包括我们咨询行业的很多服务和产品都要做更新,也要跟上时代。比如,我们有一家很大的全球性零售企业,它每天要处理海量数据,那么在海量数据之前,虽然有了技术手段,它仍需找到一个很好的切入点,去解决大数据该怎样应用到业务中,改变业务模式,给业务创新带来价值。因为要把这个大数据加以更好地利用,再便宜还是投资,还是要改变,硬件、软件各方面要做配置,甚至对应的组织要做调整,一个企业要做进一步调整才能适应大数据时代的需求,才能让大数据发挥作用。所以我们做的工作就是帮助企业找到它的价值创造,建立业务模式,来证明在这方面做这样的投资,让大数据发挥作用是值得的。
俞吾金:我想提出不同看法,就是因为人类的思维有一个特点,他把觉悟的东西夸大为全球的。比如你看到三只天鹅是白的,但其实有一千只天鹅都是白的,可在澳大利亚发现了一只黑天鹅,就把一切天鹅都是白的这个原理给推翻了,我觉得大数据这个问题是重要的,但如何正确看待它,不能走极端。大数据反映了人们从数量关系去理解生活的一种思维方法,从古代开始就非常重视,当然古代没有使用大数据这个概念。
数字本身对生活的重要性越来越大。从哲学上看,它有实践性,比如数学中的π,圆周率,它等于3.1415926……它就把所有大数据都囊括进去了,更容易理解的是三分之一,三分之一的另一种写法就是0.333333无限被延伸,所以黑客在逻辑学里就强调,这个无限包容在三分之一这个有限中,有限中包含着无限的一个展开,包含所有数据的展开,这就体现了实践精神。从这个实践角度看这个数据,我认为大数据在当代的变动中有重要地位,但看它要有眼光,不要夸大也不要缩小。
3 怎么理解三分之一就把一生所有数据都概括了?
维克托:我不同意俞老师的观点。数字的历史很悠久,但是,以前我们对这些数字的处理方式非常有限,光有技术是不够的,能对数据进行分析,比如像数字,它对你只是一个数字,这个意义不重要,你也可以用一个汉字或一个字母来表示,那从这个角度来看,大数据不过是一个很长很长的数字,你可以用心记住就可以。
但其实,大数据的价值在于,在整个数据的收集过程中,需要运用分析才可以了解。比如,如何进行预防性的维修,如何能够防止爆发等,我们不是把这个数字简单地记下来或背下来,而是要通过分析,通过数据统计的分析,通过把它进行整理了解之后分析,这不是你背下来一个数字就可以了,这是非常大的区别。
4 大数据时代究竟会给生活带来什么样的颠覆?
维克托:首先从商业来讲,我觉得有三个元素要记住:一个是在商业世界中决策将发生变化,会越来越清楚地证明,要靠数据说话。
在美国,最大的互联网公司大概是谷歌,每天都有30亿搜索请求。有一天他们屏幕上准备用蓝色,然后他们就选了一个特别的蓝色,但他是要测试41种不同的蓝色,来看到底哪一种最受欢迎。他本来想自己来决定:我是首席设计师啊,我就选了一种蓝色。但他的老板说:不行,我需要实证来告诉我们哪一种蓝色最受欢迎。但这个谷歌的首席设计师就辞职了,他说我是首席设计师啊,我是最清楚的。通过很多测试发现,有一种蓝色的蓝是裸眼看到和设计师选的蓝色不太区别得开,但另一种通过测试所产生的蓝色,更受欢迎,有更多点击量。通过实证做出来的决策更有效。类似例子有很多,都说我做这行已经几十年了,我说的肯定没错。这种传统的社会观念和思维方式会受到挑战,我们的决策必须要靠数据说话,这是第一点。
第二,就是在我们出去说话时,我们要注意不能误读数据,错误的数据是不行的。也就是如果原来的材料不对,原料是垃圾,出来的东西肯定也是垃圾,这个公司出这些数据的话都是比较容易理解的,但可能不是你应该熟悉的数据。
第三个是挑战。就是普通产业,尤其是计算机产业,数据会超越它们,这个可能是有一种挑战式的说法。如果没有足够的数据,你也赶不上一个大量数据的比较平庸的模型,也就是为什么说数据会超越那些产业。比如机器翻译这件事,在六七十年代,IBM花了很多钱想用机器翻译,它要弄一些语言的规则输入到机器中,但效果不太好,它就有了一个新想法,它不是把一种语言的语法规则输入机器,而是把加拿大议会中的英法双语的互译输进去,把成千上万的翻译资料输入进去,它就有了大量的累计组织上的数据库,这个效果就好得多。而谷歌又在这个领域有更多数据,一下子这个翻译就更成熟、效果更好。可以说,是这个数据使它超越了这个软件。因为今天这个大数据的力量,可以很容易地获得想要的资讯,但大概在十年前,需要五十万个服务器,大量的储存以及处理数据的模式,你才能开始一个新业务。今天如果要输入业务,用云计算来测试就可以了。比如有一个叫蒂塞德的公司,它有很多产品及价格,它收购一些数据来预测到底一个产品是上架还是下架,虽然他们拥有大量客户,可这个公司的员工只有13个人,因此它的服务器有很多,他们拥有大量的数据。可见,这个舞台不仅可以让大公司来做,而且创新的小公司也能以平等的地位来竞争。
王晓阳:其实讲到改变了我们整个思维方式,所谓的就是实验这个思维,比理论思维更重要,这一点我不是太懂。其实维克托先生刚才举的例子,是在很多情况下,是我们用数据去验证以前想要能够有的东西,有一些智慧确实是在数字里挖掘出来的,这个可能是一个语言来自不同的地方,怎么讲呢?基于在大数据的情况下,其实有一个所谓的循环概念,等于说你有了智慧以后去验证,验证数据里又产生了各种各样的智慧来做这样的理解,所以从这个角度来讲,我觉得是大数据的情况下面,没有颠覆,而是说一个改进,对我们认知世界的改进。就公共卫生这个话题来说,我们举的最多的一个例子就是在谷歌,有一个所谓的趋势预测,它就是用了网民们搜索的词来预测。
所谓的预测流感,怎么做?很简单,就是它去分析了以往的数据,说在流感发生的地域,地域的那个时间大家是用什么词去搜索,这样就可以做统计。做了统计以后,反过头来用这些搜索词来预测这个流感,这种情况下是什么意思?并不见得是说这种数据或大数据的情况就能使我们对这个流感突然有一个新的认识,其实不然,其实是谷歌的那些工程师们有一个想法,认为我们好像流行流感,这和大家有关,而每个人都会用搜索来获取一些跟流感有关的信息,就有了这样的关联。这个关联怎么去发现?这就要用数据去发现,用所谓的大数据的做法,去实现我们已有的一些概念的东西,把它实现了之后,就能做预测。所以从这样的角度讲,并不见得是有了大数据,我们就可以把所有的智慧都丢掉,我们不用IQ了,只要数据就好了,这肯定是不行的。一定是IQ加上数据,然后能让它有个正反的概念,这是大数据所应该干的事情。
童士豪:我有不同想法,我觉得刚才维克托先生讲的一点很有意思,就是对智慧的要求,大数据时代是不一样的。在大数据时代,对智慧的要求可以低一点,都能产生更好的结果,这是一个有意思的事情。他刚才提了一个例子,之前要做翻译是很难的,你的规则必须特别强、精简、完整,才能有60%、70%的准确率。但在大数据时代,我们不用想那些,不用花智慧讲那么复杂的规则和套路,干脆把几亿个已翻译好的文章交给电脑,用统计学的方式找到哪种情况下,翻译的字的另外一个意思是比较对的。这对于智慧的要求其实是降低了,但效果可能会更好。
孙健:可能我们对智慧的理解有歧义。我觉得维克托先生讲的我理解,因为他有另一本书叫《Delete》,里面专门讲了这个三重智慧,谈了取舍问题。因为随着存储技术、因特网的发展,他讲的更多的是知识,知识的要求可以低,但对智慧,我觉得理解不一样。我理解的智慧是,你判断一个事物的根本的、真正的洞察能力。就是,你对一个事物的洞察能力还是需要有,不会因为大数据的存在而削弱或不需要了,而恰恰因为大数据的存在才更需要洞察力。
5 大数据时代到底真正来临了吗?
王晓阳:大数据时代来不来临要看你怎么度量、衡量。现在这个数据的量和种类,以及采集的方式、手段,处理的手段,绝对已经达到了“前无古人,后无来者”的感觉。这个情况下,我们从这个数据采集以及数据处理这个能力方面来讲,我们的大数据时代来临了,但我们使用数据利用数据这个才是刚刚开始,只是刚起步。
而大数据改变我们生活的时代,还没有完全到来,但为这个我们已经做了很多准备,这是城市的管理问题。我们为大数据时代做了很多准备,比如在数据采集方面已经做了很多准备,怎么样利用这个数据来做我们这个智慧城市,这是一个最大的问题。
徐明强:从商业角度来看,我从运用上说,个人认为是来临了。举个例子,墨客这样一个药材公司,他可以根据天气性质,比如如果今天冬天特别冷,很多过敏性动物就会冬眠,四五月份突然转热时,花粉也开始多了,今年有很多人会过敏,等等,它就通过市场进行营销,把比如克敏能这种药材发布出去。
维克托·迈尔·舍恩伯格:美国总统奥巴马曾说,尽管政府也尝试,但他总是落后于企业,落后于社会的其他一些群体。所以说搞这种活动能充分激发数据,提供给大众,而且公司也可以拿这些数据,让公司能利用这些数据有更多创新。这是一个想法,也许有一些做法,比如商业方法,我认为能通过发挥企业的智慧,发挥像微软这样的一些聪明企业的智慧,还是有帮助的,包括和政府的合作来管好社会。
石述思:我有一个感受,当商业巨头面对屌丝谈大数据时,我们都有一种不寒而栗的感觉,因为尽管大数据时代我们每个人都是公平的,我们可以说小公司可以获得公平竞争待遇,但其实掌握大数据的都是一些巨头,他们有得天独厚的优势来抢我们钱包里的钱,我们很难,因为公司的定义就是在法律允许的范畴中唯利是图。但我们倒是渴望政府部门能利用大数据为我们提供普惠性的服务,可就像一些智慧城市没法真正做到智慧管理的案例一样,所以我对大数据来到中国的前途深表忧虑。还有,即使优秀的公司利用大数据,它也要面对一个现实,比如我们像电视台做广告的一样,为什么现在人依然很多,因为中国贫富差距特别大,如果你掌握了所有消费者的数据,而大多数在今天是无效数据,所以你还是有一个有选择的大数据的过程,叫有购买力的大数据,所以各种各样的问题就会出现在我们面前,就是社会本来是我们需要,但它存在很多幕后看不清楚的东西。我们担心被商业巨头利用,来完成对消费者进一步的盘剥。
孙健:我觉得从企业角度来看也是同样的问题。我前面想表达的意思就是,第一我们今天中国很多企业实际上并没有准备好迎接这个大数据,因为我们现在还停留在比较初级的基础数据分析时代,我们很多的基础数据今天都没有被运用,不要说大数据,就是小数据今天也没有很好的利用。还有很多假的数据,是因为对这些数据的输入管理非常不成熟,我自己在工作中接触很多企业,企业今天做的几件事大家都在做,有ERP系统,有数据库,有了数据就往里面存,但我发觉,有很多中国企业兑现的数据管理没有规范化的感觉,更没有很好的利用。这就存在这样的担心:最后大数据时代来了以后,我们本来中国企业在这个数据分析的利用上就不擅长,今天有了大数据以后差距会变得更大,以后国际巨头有一个成熟的数据分析方法,很多健全的商业模式,它会把这个差距变得越来越大。
6 在大数据时代,下一个预言会是什么,下一个判断会是什么?
维克托:接下来怎么能让生活比现在更高效,就是要让城市变得更加智能,这是可行的,为什么?我强调的是,我们有可能改善我们的公共卫生,改善教育,我们有能力收集数据,公共交通的通化能真正满足市民的需求,而不只是政客,而且能源消耗也会得到更好的检测、预测和管理,这样我们的城市就会更加智能,让城市的生活更加好。在150年前,曾有预测如果是在城市生活,寿命会更短;在农村生活则寿命长。而150年之后的今天,寿命更加长了,有了大数据我们会更加美好,可是有一个条件,就是那些决策者,他们一定要使用这些数字才可以。
下一步是专家怎么来做。其实这涉及到在数据时代,数据点是有限的,那么我们收集的数据,只要我们收集足够的数据来解决问题就可以了。因为非常复杂、数据点非常少,所以我们的数据点收集起来必须是要高质量的,现在不是这样的,现在的是更加的多、更加的乱。解释一下什么叫更多更乱,更多就是有数据点,关于我们想要研究的一个现象,我们可以更多的进行数据统计,比如在美国,你有DNA基因图谱,那么只要2000美金就可以知道你的整个基因图谱当中的30亿这个东西是怎么组成的,这样你就可以知道那些30亿个精对,现在如果说有一个基因组成可能会导致什么样的癌症,就可以查基因图谱,说我是不容易生这个病的,这是为什么可以预测是否患癌症的原因。那么有更多的数据便会存在一定的不准确性,所以,我说更多且更乱,所以这里允许一点点的不准确,或者可以乱一点,这个所谓的乱就是指,不是说每一个数据点都要达到最高的准确度,这个结果就是,不是百分之一百完美,但在大数据这样一种方向,或者说,我们在正确的数据点上要知道一个方向。知道方向比晚一点知道完美的数据更有效。比如交通预测,也许当下看到的交通预测比实际运用中要晚了20分钟,可能看起来太晚了,但如果这是预测一个星期的信息,就够了。
王晓阳:大数据时代对我们这个城市更加理解,所谓的理解就是你知道这个城市里发生了什么,这非常重要。在以前,这个城市的管理都是一拍脑袋,有的时候拍脑袋拍出很好的来,拍脑袋也能拍出非常棒的一个城市来,但是有的时候呢?拍脑袋可能太离谱,这种情况下在大数据时代我们怎么样利用好,就是我们所讲的。而为了政绩也可以用大数据来考虑,说这个数字到底对它的政绩有没有好处?就是名义是一个很大的方面,大数据方面不光是理解我们这个城市发生了什么,而且还能了解我们城市里的民众在想什么?这点对城市管理来说非常重要,城市不光是一个硬件设施,不光是地铁和高楼,人在里面非常重要。
数据分析咨询请扫描二维码
数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22