热线电话:13121318867

登录
首页精彩阅读数据分析领域中最为人称道的七种降维方法(1)​
数据分析领域中最为人称道的七种降维方法(1)​
2015-10-08
收藏

数据分析领域中最为人称道的七种降维方法(1)



来由于数据记录和属性规模的急剧增长,大数据处理平台和并行数据分析算法也随之出现。

近来由于数据记录和属性规模的急剧增长,大数据处理平台和并行数据分析算法也随之出现。于此同时,这也推动了数据降维处理的应用。实际上,数据量有时过犹不及。有时在数据分析应用中大量的数据反而会产生更坏的性能。


最新的一个例子是采用 2009 KDD Challenge 大数据集来预测客户流失量。 该数据集维度达到 15000 维。 大多数数据挖掘算法都直接对数据逐列处理,在数据数目一大时,导致算法越来越慢。该项目的最重要的就是在减少数据列数的同时保证丢失的数据信息尽可能少。


以该项目为例,我们开始来探讨在当前数据分析领域中最为数据分析人员称道和接受的数据降维方法。


缺失值比率 (Missing Values Ratio)
该方法的是基于包含太多缺失值的数据列包含有用信息的可能性较少。因此,可以将数据列缺失值大于某个阈值的列去掉。阈值越高,降维方法更为积极,即降维越少。该方法示意图如下:

低方差滤波 (Low Variance Filter)
与上个方法相似,该方法假设数据列变化非常小的列包含的信息量少。因此,所有的数据列方差小的列被移除。需要注意的一点是:方差与数据范围相关的,因此在采用该方法前需要对数据做归一化处理。算法示意图如下:

高相关滤波 (High Correlation Filter)
高相关滤波认为当两列数据变化趋势相似时,它们包含的信息也显示。这样,使用相似列中的一列就可以满足机器学习模型。对于数值列之间的相似性通过计算相关系数来表示,对于名词类列的相关系数可以通过计算皮尔逊卡方值来表示。相关系数大于某个阈值的两列只保留一列。同样要注意的是:相关系数对范围敏感,所以在计算之前也需要对数据进行归一化处理。算法示意图如下:

随机森林/组合树 (Random Forests)
组合决策树通常又被成为随机森林,它在进行特征选择与构建有效的分类器时非常有用。一种常用的降维方法是对目标属性产生许多巨大的树,然后根据对每个属性的统计结果找到信息量最大的特征子集。例如,我们能够对一个非常巨大的数据集生成非常层次非常浅的树,每颗树只训练一小部分属性。如果一个属性经常成为最佳分裂属性,那么它很有可能是需要保留的信息特征。对随机森林数据属性的统计评分会向我们揭示与其它属性相比,哪个属性才是预测能力最好的属性。算法示意图如下:

主成分分析 (PCA)
主成分分析是一个统计过程,该过程通过正交变换将原始的 n 维数据集变换到一个新的被称做主成分的数据集中。变换后的结果中,第一个主成分具有最大的方差值,每个后续的成分在与前述主成分正交条件限制下与具有最大方差。降维时仅保存前 m(m < n) 个主成分即可保持最大的数据信息量。需要注意的是主成分变换对正交向量的尺度敏感。数据在变换前需要进行归一化处理。


数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询