大数据产品到底应该是什么形态
大数据很时髦,但企业如何操作,如何落地,才是真正要面对的,好在现在我们看到很多朋友开始思考这样的实操性问题,本文将从大数据产品形态角度帮助我们理清一些概念。
嗨,朋友,看到这个标题请先别主观排斥,跟你一样,我也反感动辄乱谈大数据,为了后续的沟通愉快,先做下这里的“大数据“指向,特指符合4V特点的大数据,即:
1,数据体量巨大;
2,数据类型繁多;
3,价值密度低;
4,处理速度快。
所以,本文的“大数据”既不是有些人口中的海量数据,也不是非结构化数据,更不是什么相关与因果,这里不谈什么是大数据,只谈谈大数据的产品形态与商业逻辑,抛砖引玉,期待交流。
一、大数据的产品特性
顾名思义,“大数据产品”应该是基于大数据而设计出的产品,那么理应符合大数据的特点,毕竟基因在那,那么回顾下大数据与(传统)数据有哪些具体区别。
(传统)数据是通过问卷调查收集数据,或者是已存储的历史经营数据,比如财务数据、销售数据这些,至于数据量级,可能就是一台server的存储级别。
而大数据是海量,这个海量并不是某个时间断点的量级总结,而是持续有更新,持续有增量,那么就决定了可以”制造”出大数据产品的应该不是传统企业,而是类似电信、银行、微博这样的平台级机构,或者依附于平台级企业的第三方机构,亦或者是更宏观层面的政府管理机构。
这些机构拥有大量用户,可以源源不断的产生UGC数据,因此存储和计算成本必然会随之上涨,也就决定了大数据产品的甲乙方级别,屌丝可能会被无情的淘汰出局。这些数据不仅仅是数值型的结构化数据,还包括文本内容、图片、音视频等非结构化数据。
在处理速度上,(传统)数据使用excel或者spss,前期有严谨的方法论,后期有完善的分析处理过程,从数据的收集到最后报表/报告的产出,这个周期可能在至少一周以上,而大数据因为有了hadoop/storm等IT技术的支持,在处理速度上可以保证在小时级延迟,甚至更快。
这里需要补充一点的是,大数据产品是否要快速计算?个人觉得应该是,这里的快速是相对快,不一定非要实时,毕竟在收集、存储、计算上花了更多的成本,策略如果不及时发现,也对不起那些集群啊。
那么是否说大数据就一定比(传统)数据好了?不一定,引用祝建华老师《文科教授眼中的大数据》里的一段话,“理论上讲大数据指的应该就是总体数据。但实际上,由于技术、商业、保密和其它原因,除了少数大数据的原始拥有者,对于绝大多数的第三方来讲,现在大家讲的大数据,基本上都不是总体数据而是局部数据。注意,这种局部数据,哪怕占了总体的很大一个百分比(70%、80%),既不是总体数据、也不是抽样数据。因为哪怕是缺了10%、20%的个案,局部数据跟总体也许就有很大的差别。”
所以在总体代表性上,(传统)数据可以较好的代表整体,而大数据可能会出现偏差。但是,这个偏差并不影响大数据产品的商业应用,举个例子,微博上每天都有各种口碑和舆情,如果涉及某个企业的负面舆情突然趋势走高,即使在不能代表总体的情况下,你能认为这个态势不值得警惕么?当然是不能。并且,大数据产品对使用者的要求更高了,不光关注活跃的数据,还得关注沉默的数据。
由此,大数据产品所具备的特性应当是:
1、数据量级更多;
2、数据处理速度更快;
3、数据类型多样;
4、使用者要求更高。
那么,大数据产品究竟长啥样?
二、大数据的产品形态
先说一个亲身经历,在家收看好声音导师考核的汪峰场,之前一直很期待这场,毕竟汪峰的风格理念偏重社会观察,偏重人文洞察,但看到快一半的时候,却发现很乏味,想换台,没有那英那场更黏我,如果说看上一场脸部肌肉是松弛的话,那这一场则是紧绷的,”上苍、思念、回忆、故人、泪水….”当这些碎片词语不断的充斥在我的耳边时,真的不觉得这是一个娱乐节目,一个比一个悲凉,我的诉求很简单,像看周星驰无厘头电影一样,开心一下足矣,哪怕没有任何的教育意义。
随后我发了一条微博吐糟,引来众多附议。我想这应该是不少受众当时的心态,但不代表对汪峰场的整体评价。那么,试想一下,如果你是好声音的竞争对手,在此刻很实时的洞察到了用户的心情反馈,再通过合适的路径传递出营销信息,受众是否会换台?答案是未知的,但想象空间是巨大的。
这个场景很恰如其分的给我们描绘出了大数据的产品形态。首先他需要在平台级机构(微博)上监控海量数据(微博内容),这些数据是非结构化的,通过实时计算获得洞察(拥有不满情绪的是少量群体还是大量群体,是真实声音还是噪音污染),并快速应用(推送营销信息)。
这样的例子还有很多,特别是在营销环境里,受众的情绪不是线性稳定的,可能十分钟前还是心情愉悦的,而十分钟后,则是心情紧张的,不利于接受你的品牌信息并形成记忆,这些情绪的变化是随机动态的,因环境的变化而随之变化。还有哪些属于大数据产品呢,仅以我所了解的互联网领域为例,DSP、RTB、推荐系统,另外就是宏观的情报系统了,比如联合国的全球脉动项目。
三、总结
综上所述,大数据的产品形态应该是,运行在平台级机构之上,通过对持续性海量增加的多结构类型数据,进行快速计算产生策略,结合使用者的经验认知及时应用,进而产生价值形成商业闭环,一切不以此为特性的大数据产品都是耍流氓!
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20