大数据产品到底应该是什么形态
大数据很时髦,但企业如何操作,如何落地,才是真正要面对的,好在现在我们看到很多朋友开始思考这样的实操性问题,本文将从大数据产品形态角度帮助我们理清一些概念。
嗨,朋友,看到这个标题请先别主观排斥,跟你一样,我也反感动辄乱谈大数据,为了后续的沟通愉快,先做下这里的“大数据“指向,特指符合4V特点的大数据,即:
1,数据体量巨大;
2,数据类型繁多;
3,价值密度低;
4,处理速度快。
所以,本文的“大数据”既不是有些人口中的海量数据,也不是非结构化数据,更不是什么相关与因果,这里不谈什么是大数据,只谈谈大数据的产品形态与商业逻辑,抛砖引玉,期待交流。
一、大数据的产品特性
顾名思义,“大数据产品”应该是基于大数据而设计出的产品,那么理应符合大数据的特点,毕竟基因在那,那么回顾下大数据与(传统)数据有哪些具体区别。
(传统)数据是通过问卷调查收集数据,或者是已存储的历史经营数据,比如财务数据、销售数据这些,至于数据量级,可能就是一台server的存储级别。
而大数据是海量,这个海量并不是某个时间断点的量级总结,而是持续有更新,持续有增量,那么就决定了可以”制造”出大数据产品的应该不是传统企业,而是类似电信、银行、微博这样的平台级机构,或者依附于平台级企业的第三方机构,亦或者是更宏观层面的政府管理机构。
这些机构拥有大量用户,可以源源不断的产生UGC数据,因此存储和计算成本必然会随之上涨,也就决定了大数据产品的甲乙方级别,屌丝可能会被无情的淘汰出局。这些数据不仅仅是数值型的结构化数据,还包括文本内容、图片、音视频等非结构化数据。
在处理速度上,(传统)数据使用excel或者spss,前期有严谨的方法论,后期有完善的分析处理过程,从数据的收集到最后报表/报告的产出,这个周期可能在至少一周以上,而大数据因为有了hadoop/storm等IT技术的支持,在处理速度上可以保证在小时级延迟,甚至更快。
这里需要补充一点的是,大数据产品是否要快速计算?个人觉得应该是,这里的快速是相对快,不一定非要实时,毕竟在收集、存储、计算上花了更多的成本,策略如果不及时发现,也对不起那些集群啊。
那么是否说大数据就一定比(传统)数据好了?不一定,引用祝建华老师《文科教授眼中的大数据》里的一段话,“理论上讲大数据指的应该就是总体数据。但实际上,由于技术、商业、保密和其它原因,除了少数大数据的原始拥有者,对于绝大多数的第三方来讲,现在大家讲的大数据,基本上都不是总体数据而是局部数据。注意,这种局部数据,哪怕占了总体的很大一个百分比(70%、80%),既不是总体数据、也不是抽样数据。因为哪怕是缺了10%、20%的个案,局部数据跟总体也许就有很大的差别。”
所以在总体代表性上,(传统)数据可以较好的代表整体,而大数据可能会出现偏差。但是,这个偏差并不影响大数据产品的商业应用,举个例子,微博上每天都有各种口碑和舆情,如果涉及某个企业的负面舆情突然趋势走高,即使在不能代表总体的情况下,你能认为这个态势不值得警惕么?当然是不能。并且,大数据产品对使用者的要求更高了,不光关注活跃的数据,还得关注沉默的数据。
由此,大数据产品所具备的特性应当是:
1、数据量级更多;
2、数据处理速度更快;
3、数据类型多样;
4、使用者要求更高。
那么,大数据产品究竟长啥样?
二、大数据的产品形态
先说一个亲身经历,在家收看好声音导师考核的汪峰场,之前一直很期待这场,毕竟汪峰的风格理念偏重社会观察,偏重人文洞察,但看到快一半的时候,却发现很乏味,想换台,没有那英那场更黏我,如果说看上一场脸部肌肉是松弛的话,那这一场则是紧绷的,”上苍、思念、回忆、故人、泪水….”当这些碎片词语不断的充斥在我的耳边时,真的不觉得这是一个娱乐节目,一个比一个悲凉,我的诉求很简单,像看周星驰无厘头电影一样,开心一下足矣,哪怕没有任何的教育意义。
随后我发了一条微博吐糟,引来众多附议。我想这应该是不少受众当时的心态,但不代表对汪峰场的整体评价。那么,试想一下,如果你是好声音的竞争对手,在此刻很实时的洞察到了用户的心情反馈,再通过合适的路径传递出营销信息,受众是否会换台?答案是未知的,但想象空间是巨大的。
这个场景很恰如其分的给我们描绘出了大数据的产品形态。首先他需要在平台级机构(微博)上监控海量数据(微博内容),这些数据是非结构化的,通过实时计算获得洞察(拥有不满情绪的是少量群体还是大量群体,是真实声音还是噪音污染),并快速应用(推送营销信息)。
这样的例子还有很多,特别是在营销环境里,受众的情绪不是线性稳定的,可能十分钟前还是心情愉悦的,而十分钟后,则是心情紧张的,不利于接受你的品牌信息并形成记忆,这些情绪的变化是随机动态的,因环境的变化而随之变化。还有哪些属于大数据产品呢,仅以我所了解的互联网领域为例,DSP、RTB、推荐系统,另外就是宏观的情报系统了,比如联合国的全球脉动项目。
三、总结
综上所述,大数据的产品形态应该是,运行在平台级机构之上,通过对持续性海量增加的多结构类型数据,进行快速计算产生策略,结合使用者的经验认知及时应用,进而产生价值形成商业闭环,一切不以此为特性的大数据产品都是耍流氓!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31