大数据核心是在应用层面 真实有效最重要
2015年11月20日在广州车展(微博)现场,腾讯汽车举行大数据研究院战略发布仪式,正式启动“罗盘计划”。在发布仪式现场,北京金马甲产权网络交易有限公司副总裁龚冯兵现场参与互动讨论。
龚冯兵:金马甲从2009年诞生之日开始到现在已经六个年头了,在这六年里,金马甲平台在各地公车的处置上,积累了几十万条数据。我们从二手车交易来看,本地化属性很强烈。基本上做二手车都在周边800到1000公里范围之内,这就是二手车生态的特点。
从数据的角度说,不管是对于处置公车还是二手车,首先做公有车处置核心的是汽车价值评估。基于这个市场来说,之前在近几期的针对同一车款、同一年份等等,二手车的成交价格、车况什么样,车价格什么样,对于新进入市场做评估的时候,这种数据就会有具体的应用。
同时对于经销商来说,周边最近看什么品牌的车,或者什么样的二手车销量和处置情况状态,这对于经销商来说也是有利用价值的数据。因为大数据来说,我们之前也都或多或少像J.D.Power所说的,从很早的时间就做大数据,但是没有像现在是当做特别新的概念来提。可能很多人都会在大街上碰到调查问卷,这些都是大数据最原始的搜集和积累应用的方面,只不过这些年随着互联网技术、新技术的增加,让数据的采集和数据的获取方面得到了极大的效率,在数据获取的效率方面得到了极大提升。同时,利用新技术对于数据的处理分析能力也获得了巨大的提升。
在二手车处置方面,大数据最核心的是在应用层面,什么样的人来用数据,身份不一样,那对于数据的要求是不一样的。可能针对于汽车行业,我个人认为可能有三个。一个是主机厂,一个是汽车的经销商,包括各类新车的经销商、二手车经销商,还有最广大的是用户。针对于各个层面在汽车领域里面的身份,对于数据的需求是不同的。我们作为交易平台来说的话,现在正在做的工作,就是针对于不同的身份来提供相应感兴趣的,或者针对与他适应性非常强的数据。
问:请问龚冯兵总,现在在广州、深圳、天津、杭州实施的禁牌的系统,其实里面也有很多的数据。您能否介绍一下这种数据?其实更偏向于更精准一点。从这种数据来看的话,平台运营情况怎么样,以及各个城市之间有差异?互联网数据和这个平台进行结合的话,请您谈一下看法?
龚冯兵:实际上从这四地号牌每个月的竞价情况来看,就像刚才咱们所介绍的一样,本地的特性是特别明显的。不管是从参与人数,从每个地号牌成交的均价来说,地区之间都有差异化。从整体来说,像我们四地基本上每个月的竞牌的获得者总体来说在2万个用户。因为还有一部分是摇号的,光是通过竞价方式获得车牌的就是2万用户左右。每个月关注的在10万左右,也就是有意向竞牌的统计下来有10万左右。关注的基本上就更多了,在四个城市里面有两三百万的规模。
本身竞牌的核心就是一个数据最核心的,这个月可能获得了竞牌会在未来的一个月到两个月会实施购车计划。在这个过程当中,实际上这个数据对于各个品牌的主机厂来说,或者是对于想要在未来获得购买汽车,以及对获得车牌的广大消费者来说,都是有非常好的意义。
我们在通过之前每期的车牌竞价数据的积累,也是在不断地分析、研究,包括数据的车牌价格的走向。也挺有意思的,不像8、9月份价牌会高,10月到11月价格又回落。而是价格有高有低,我们也是通过数据的分析形成价格波峰波谷的规律。同时希望通过数据分析,对于主机厂和对于四地的消费者来说,也能够给予一定的参考和支撑的作用。
第一个层面,在顶层上现在大家都在说大数据,国家在大数据相关立法方面应该拿出具体的措施来。让大家在一个合规合法的情况下去获取数据,去分析数据,去运用数据,让它在法制的大环境下产生更大的经济效益。
第二个层面,像各位嘉宾都是在做大数据生产和经营方面的事情。对于消费者来说,我们能够给各类的消费者提供真实有效的,特别是有效和真实的数据,是我们大数据从业者所要牢固树立的核心出发点。
第三个层面,从金马甲本身来说,希望在今后包括跟腾讯汽车,罗盘计划我们也进入了,跟张教授和从业者一起共同努力,给汽车行业的经营者和消费者提供更为高效和优质的服务。
张教授刚才提到了腾讯推出具体的产品,实际上金马甲跟腾讯现在正在做的四地号牌的产品。我们利用腾讯的微信,做了一个微信的四地号牌的产品,通过这个产品可以给四地号牌消费者非常好的服务,包括历史成交的数据,包括下一步的价格分析等等。我们想通过与跟腾讯汽车合作的产品,来为消费者进行精准的服务。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28