一个成功的数据分析团队:角色与职责
多年以来我和数百家企业打过交道,在这个过程中,我领悟了让数据分析项目成功的一些因素,也亲眼看着很多项目失败。
最常见的失败原因说出来可能会让你惊讶。并非是缺乏数据专业知识或者整合失误,而仅仅是因为企业没有让“利用数据”成为任何人员的职责。太多公司花费好几个月收集有趣的数据,然后让它们静静地躺在角落里积攒灰尘。这个现象驱使我来撰写本文,希望它能给你灵感,让你为下一个分析项目增加一些结构性。 对分析的应用,本应该成为你不断汲取的商业泉源。
如果能为下列每个角色,找到至少一个乐于担当的人选,我保证你项目成功率会增加一千倍!对每个角色的具体描述和建议见下文。
*并未经过科学证实
角色 | 交付 |
---|---|
项目领导者 | 项目规划,包含工作范围与时间 |
数据建构者 | 数据模型,查询语句 |
产品开发者 | 实现跟踪(埋点) |
分析者 | 提供新的业务问题 |
报告制作者 | 为业务提供报告 |
有一个团队成员要负责分析工作的实施交付。你可能已经知道,一个高效的项目管理者要:
对项目领导者的建议:
这个头衔听起来很炫,但它只是意味着你的团队需要有个懂技术的人创建数据模型,并理解查询语句如何工作。数据模型可以很简单,甚至像一封电子邮件,列出你要跟踪的行为和优先级。这个模型有助于确定和传达你的项目范围。数据建构者帮助整个团队评估哪些业务问题可以被回答,哪些不能。通常这个人不必是数据科学博士,一般由一个app开发人员,或者懂得用电子表格建立模型的人担任。
对数据分析者的建议:
项目一开始,就要有至少一个开发人员承担埋点的工作。他们在各处加一些代码,这样每次登录、购买、上传和其他行为的数据都能被保存。如果事件的来源有很多,比如移动应用+网页,这个工作可能由多个开发者完成(如,一个网站开发者和一个移动开发者)。在小一些的机构,埋点的开发者通常也扮演数据建构者。在大一些的团体中,开发者和数据建构者紧密合作,确保模型数据足够理想,以及事物被跟踪并以一致的格式标记(如“user.id” = “23cv42343jk88” 不是 “user.id” = “fran@cooldomain.com”)。埋点是个相对直接的过程,许多分析服务有直接可用的客户库使得此过程简化,不过,你的团队依然需要决定要跟踪什么行为,如何命名。
对产品开发者的建议:
你会收集很多有意思的数据,但如果没人利用,这些数据就不会有价值。团队里需要至少有一个人对数据背后隐藏的东西非常好奇。我把这些人称为分析者。分析者通常是个开发者、产品经理或产品团队/营销团队的某个人。这些人不仅疯狂地想了解业务问题的答案,还能时时提出新问题。分析者喜欢钻研项目第一阶段收集的数据,而且有很多点子,引出下一阶段应该收集的新东西。换句话说,团队中需要有个人享受实践分析的过程。不要着急,这样的人有很多:)。技术背景对这个角色有很大帮助,这使得他们能快速理解什么样的查询语句可以得到想要的答案。这个角色对于项目成功至关重要,如果没人从数据中理解、学习,就无法从中得到任何价值。
对分析者的建议:
这个角色不是必需的,但你可能会想要制作一些报告,便于整个团队和其他利益相关者获取。要想让数据的实用性会大大提升,数据应该更紧密地与业务流程相连,而不是被遗弃在数据库里等着有人翻阅。一个前端开发者要能够把query变成产品经理和其他业务人员阅读的报告。下面是一些可能有用的例子:
对报告制作者的建议:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31