从另一个视角看大数据
大数据之所以在我国引起如此大的关注,也是由于在传统文化理念中,“大概齐、差不多”的习惯深入人心,在公共决策、商业选择、个人行为中充斥着“拍脑袋”现象。
大数据是当下最时髦的话题之一,依照迈尔·舍恩伯格及库克在《大数据时代》的描述,数据被定义为不用随机分析法(抽样调查)而运用所有数据的方法。除了对于社会组织、公共服务、人们生活的重大影响之外,这一热潮背后的关注焦点,其实还是商业模式,即相关数据仓库、数据安全、数据分析、数据挖掘等围绕大数据的商业价值利用。
大数据之所以在我国引起如此大的关注,也是由于在传统文化理念中,“大概齐、差不多”的习惯深入人心,在公共决策、商业选择、个人行为中充斥着“拍脑袋”现象。正如历史学家黄仁宇在《赫逊河畔谈中国历史》所论述的那样,“西欧和日本都已以商业组织的精神一切按实情主持国政的时候,中国仍然是亿万军民不能在数目字上管理。”当然,这种模糊管理下的信息不对称,亦成为另外一种既定利益格局的存在基础。正因为此,当信息爆炸时代快速来临之时,对数据信息的渴望迅速在社会不同层面体现出来。据报,汪洋副总理就曾向广东财政厅干部推荐涂子沛写的《大数据》。
要论大数据的历史,或可追溯到19世纪末。美国统计学家赫尔曼·霍尔瑞斯为统计1890年的人口普查数据,发明了一台电动器来读取卡片上的洞数,该设备用一年时间完成了原本需耗时八年的人口普查,由此开启了数据处理的新纪元。进入21世纪,随着信息技术、云计算的高速发展,以及社交网络的普及,大数据被赋予了全新含义。应该说,基于数据化严重不足的大背景,在我国经济社会发展中强调大数据的作用,其积极意义非常深远,但与此同时,也要避免走向另外的某些极端,这就需要相应的冷思考。
比如,在大数据的推动者之中,一方面各类新兴互联网企业成为主力,另一方面传统企业也在着力跟随,其根本动力都是在于发掘新的商业利润来源,以弥补我国经济转型期的投资迷茫。在此过程中,对于个人的利益和诉求还缺乏合理的认识和定位。虽然大数据对于进一步理解和服务消费者起到重要作用,但从其他侧面看,无序的、低效的、无用的信息轰炸,往往给个人带来“信息过度”的不佳体验,而在数据成为财富的狂热驱动下,对于个人信息权利的侵犯几乎无处不在,尤其在我国缺乏个人信息保护规则的条件下,数据渴望和采集很可能成为激怒消费者的动因,且拉大了与真正的消费者主权社会的距离。
另外,更值得我们思考的是,如果信息产生基础或其环境存在问题,那么大数据的技术是否会造成更大的信息扭曲?从金融市场的角度看,大数据在深刻改变高频交易方式、信贷风险判断等环节同时,也带来了其他潜在风险的积累,如信息误读造成的市场波动突然被放大,以及难以监管的新型金融产品创新等等。可以说,在诸多领域都缺乏法律游戏规则约束,更缺乏职业道德约束的情况下,如果初始数据就存在问题,那么在此基础上的大数据分析手段,恐怕就只有“南辕北辙”的效果了。从大处说,各类统计数据造假历年来都是被舆论广泛质疑的焦点;从小处说,在很多领域数据失真已经成为常态。例如,据5月7日的《北京青年报》报道,由于受到利益绑架,北京地区的电视收视率数据或许已被污染。再如,我国赴海外留学生的国内学校成绩,就一度存在许多造假行为,直到欧美出现更严厉的制约才有所收敛。无论如何,一旦数据本身的问题太多,则带来的只有大数据的灾难。
我们知道,信息不对称的后果是扭曲了市场机制的作用,误导了市场信息,造成市场失灵。如果处在普遍的信息数据缺乏状态下,经济行为的不确定性也会增加,往往会降低市场效率。反之,是过犹不及,即便是在上世纪末所谓“信息爆炸”年代,也远不如当前阶段如此快速的信息积累。据统计,互联网上的数据每两年翻一番,而全球绝大多数数据都是最近几年才产生的。面对似乎逐渐“供大于求”的数据,如何找到有用的信息,成为利用大数据的关键问题。正如美国颇有影响力的预测专家纳特·西尔弗在《信号与噪声》一书中所分析的:“如果信息的数量以每天250兆亿字节的速度增长,其中有用的信息肯定接近于零。大部分信息都只是噪声而已,而且噪声的增长速度要比信号快得多。”由此看来,当数据信息铺天盖地而来之时,也可能距离真相越来越远。在现实中,对于一哄而上追求大数据的企业来说,也需要冷静思考下,在信息过度充分的年代,如何把数据真正变成真正的价值?
大数据如同一把双刃剑,正如不少好莱坞电影中政府对公众无所不在的监控,大数据的爆炸,也让现代人对个人信息安全失控充满了担忧。斯诺登和棱镜事件,进一步在全球范围的国家之间提出这个疑问。一方面,在不可避免地拥抱大数据时代之前,可能更需要加强对其潜在风险的认识,做好基础数据净化、个人信息保护、国家信息安全等基础性建设;另一方面,大数据既可用来推动新商业模式演进,也可用来通过“抓坏蛋”,间接促进社会信息环境的完善,从而夯实大数据根基。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31