我觉得从事数据挖掘工作,尤其是在互联网行业,主要需要三个方面的能力,即机器学习和数据挖掘的理论知识、编程开发与数据结构算法的基础和业务理解与沟通表达的能力。
上面的图里列出了这个行业不同类型的从业者机器特点。
A. 主要是负责做最顶尖机器学习相关学术研究。比如发明一些新的算法,想早期的SVM,LDA最近的一些deeplearning模型。但是处在塔尖的的他们对于这些算法在业务场景的应用或者算法的实现兴趣并不大,主要精力都花在了理论研究上,比如证明个bounds什么的。写出来的东西大部分发表在NIPS或者ICML上,一般人也看不懂。他们主要存在于一些研究机构中,如国外高校或者企业研究院。一般企业如果需要这样的人,也是挖过来当震厂之宝吉祥物,不属于我们讨论的范围。
B. 他们既对算法有比较深入的了解,又有高超的编程技术。他们的数学可能达不到炉火纯青的地步,他们的兴趣也不在于各种繁琐的理论推导。他们对已有算法进行改进,并且给出最好的实现,造福广大人民群众,比如libsvm,svdfeature,paramater server这样的工具。当然,这样的人才也是可遇不可求,而且他们也需要一个比较大的平台来施展自己的能力。他们的工作应该能够成为一个企业数据挖掘的大杀器。
C.他们对算法有一定的了解,但是不够深入。他们开发的经验有限,对于数据挖掘的应用了解也不够深入。比如很多理论方向的研究生博士生可能就处于这个状态,即使能够发表一些看起来不错的文章,但离真正做出好的实际的数据挖掘工作还有很长的一段距离,需要一步一个脚印的踏实前进。
D.他们是算法界的大神,码农中的翘楚,横扫各路ACM ICPC比赛的英雄。因为各种机缘巧合,他们没有选择数据挖掘作为自己以后的方向。虽然他们对于机器学习理论和数据挖掘的应用场景不是很了解,但凭借他们的天赋,假以时日,也一定能在这个行业有所作为。不过,其他领域也需要他们,也有他们大展拳脚的空间。
E.他们属于一般的码农,能写的一手好代码。但是对机器学习知之甚少,而且如果思维不够灵活,可能也会在业务的理解上有一些障碍。另外,沟通交流的能力通常也是码农们所欠缺的。对于应届生,如果确实有这个天赋,不妨一试;对于工作多年的码农想转行,也需要付出比较大的努力。
F.他们的工作贴近业务,对数据也有一定敏感性,可能是excel和sql的高手。但是这和数据挖掘的工作还有一定差别。最适合他们的岗位可能是BI或者数据产品经理。在这些岗位上,他们同样可以发光发热,做出卓越的贡献。
G.他们有一定的算法基础,同时对数据挖掘的业务落地也有丰富的经验。他们的瓶颈主要在于编程开发能力,这在大数据的场景下尤为明显。毕竟最好的方式是自己想idea,自己实现,至少实现一个原型。那么R或者python是一个这种的选择。没有coding,再好的算法也出不来。
H.对机器学习算法有一定的了解,熟悉各种业务,也有一定的开发能力。在数据挖掘的具体工作中,可以从业务出发,设计算法,也能对算法进行基本的实现。实际上这样的工程师还是很多的,特别是有一定工作经验的。他们的工作经验会对数据挖掘的工作起到很大的帮助。他们在算法以及编程的上的能力可能不是很高,但是足以丰富他们的思维方式,也方便与人沟通。
I.对机器学习算法有一定了解,也有较强的开发能力。适合做偏向开发的数据挖掘岗位。他们和I类的工程师密切配合,应该能有比较好的产出。他们很可能是学校的应届毕业生,学习了一些理论知识,也锻炼了开发的能力,但还缺乏实际的工作经验。互联网的数据挖掘岗位正是他们大展拳脚的好地方。
J.看起来是最好的,各项技能都很全面,也很适合做leader。但是这样的人毕竟可遇不可求。另外,每一项都好其实也就是每一项都不好,人的精力总是有限的。我觉得在一到两个方面做的比较突出,同时另外的方面也不要太弱以至于成为短板,这样就挺好的了。
根据上面说的,招聘主要根据H和I两类模版挑选人才。觉得考察的话,除了基本的开发算法,还有以下几个:
1.机器学习算法的理解,比如常见的算法的基本思想原理、应用场景、特点和求解方法。可以从两个分支考察,一个是使用经验,比如实际的一些参数设置啊,使用技巧什么的,面向H类。还有就是一些算法的实现方法,面向I类。
2.实际的项目经验,特别是数据挖掘工作。一方面考察他之前的工作情况,另外也看他的归纳总结能力与解决问题的能力。针对项目的一些细节提问,也可以看出他的做事方式和对一些知识的掌握情况。
3.对于业务的理解能力和敏感性,可以结合实际工作中的一些问题来考察。即使没有实际工作经验,也是可以看出他们在这个方面的潜力。同时也考察出理论和实际结合的能力。
4.沟通表达能力。相对于程序员,数据挖掘岗位对这个能力的要求高出不少。在整个面试的过程中,其实都有对这个能力的考察。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17