大数据实践 基础架构先行_数据分析师
大数据被认为是下一个创新、竞争和生产力的前沿,谁率先抓住大数据的先机即意味着能够在未来市场竞争之中取得杆位。当前大数据市场除了传统厂商之外,还同时涌现出一大批创新技术厂商,并且像零售、金融、互联网、政府机构、科研教育等行业用户对于大数据的认知与认可大大超过了以往任何一项IT技术。归根结底,这是因为大数据能够对业务产生最直接的影响。大数据当前处于上升期和快速发展时期,人们当前对于大数据的期望值也是越来越高。
大数据时代下的基础架构挑战
毫无疑问,大数据时代下,要想实现更大的业务价值,首先需要解决的就是基础架构问题,基础架构之中存储又是重中之重。当前趋势下,社交媒体、移动互联网、物联网、多媒体应用等趋势兴起使得非结构化、半结构化数据大幅增长,加上传统的结构化数据增长,用户的整体数据量呈现出海量、高增长的状态。如何面对数据源繁多、数据增长速度快速、数据种类丰富化、数据存取形式复杂化以及应用需求多样化就成为当前大部分用户首要面对的挑战和难题。
著名咨询机构麦肯锡认为,大数据是指其大小超出了典型数据库软件的采集、存储、管理和分析等能力的数据集。大数据公认的4V特征包括:容量、类型、速度以及价值(volume、variety、velocity和value)。著名调研机构IDC对于大数据技术定位为:通过高速捕捉、发现和/或分析,从大容量数据中获取价值的一种新的技术架构。另外一方面,我们也可以发现当前对于大数据的一个误区广泛存在于用户之中:当前仍然有很大一部分用户认为新兴起的Hadoop技术、商业智能分析(BI)这些就意味着大数据,他们认为掌控好Hadoop或者BI即可掌控大数据。事实上,大数据不仅仅是Hadoop或者商业智能分析,这些热门技术是大数据分析和处理过程中当前热门的领域,而要想真正实现大数据的价值、为业务发展服务,则需要从全面的角度考虑。
因此,传统存储产品由于自身的设计缺陷,在扩展性方面、与上层应用集成度、高性能、自动化能力、成本等方面已经很难满足大数据诸多的存储特征,根本很难肩负起企业大数据存储、分析以及应用的诸多需求。尤其当前数据的类型丰富程度、容量愈发变大的情况下,并且在业务部门跟IT日益紧密的趋势下,对于数据的存储与分析的速度和性能要求越来越高,对海量数据的快速、高效存储绝对应该是大数据时代存储系统的第一必备要求,否则大数据后续相关的大数据分析、大数据处理都将成为空谈。
看清大数据趋势 不再雾里看花
在大数据时代下,大数据存储产品显然要比传统存储产品考虑更多因素,目前市场中已经有很多专门为大数据应用设计和开发的存储系统,这其中包括国内和国外诸多厂商的产品。虽然有很多产品可供大家参考和选择。但是对于用户而言,能够看清大数据基础架构的发展趋势,则可在基础架构建设方面不再雾里看花。
趋势一:容量大、易扩展。众人皆知,大数据的容量往往是PB级别,甚至有些用户的数据量开始达到EB级别,这要求未来的存储系统能够具备容量大、易扩展的特点。
趋势二:高性能。大数据的一大特征即为速度,要求存储系统能够快速存储数据,因此这要求存储系统的响应速度能够符合大数据的要求。
趋势三:多集成。大数据时代下,数据来源广泛与复杂,不同类型的数据访问、处理和分析的方式不同,这就要求大数据时代下存储系统的接口集成化,使得大数据存储系统能够应对不同的数据需求。
趋势四:自动化。由于大数据使得数据量大幅增加以及数据处理流程、方式更加复杂,给存储系统的管理、维护变得更加复杂。因此,管理自动化也是衡量大数据存储系统的重要趋势。
趋势五:安全可靠。大数据最为核心的价值所在即为数据,因此确保数据的安全可靠也是大数据存储需要重点考虑的因素。保证数据的可用性、完整性和持久化都是未来存储系统所必备的趋势。
趋势六:弹性成本。大数据并不意味着用户必须要在基础架构上一次性投入大额成本,具有弹性、可扩展的存储系统能够帮助用户实现弹性成本,让不同层面的用户都能在大数据浪潮中淘金。
综述
追本溯源,在大数据时代下,我们往往不能只将眼光盯在数据分析与处理层面,用户在尝试大数据解决方案之前,更应从全面角度去审视自身的基础架构是否适合大数据未来的需求与发展——大数据实践,基础架构先行。CDA数据分析师培训官网
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21