大数据实践 基础架构先行_数据分析师
大数据被认为是下一个创新、竞争和生产力的前沿,谁率先抓住大数据的先机即意味着能够在未来市场竞争之中取得杆位。当前大数据市场除了传统厂商之外,还同时涌现出一大批创新技术厂商,并且像零售、金融、互联网、政府机构、科研教育等行业用户对于大数据的认知与认可大大超过了以往任何一项IT技术。归根结底,这是因为大数据能够对业务产生最直接的影响。大数据当前处于上升期和快速发展时期,人们当前对于大数据的期望值也是越来越高。
大数据时代下的基础架构挑战
毫无疑问,大数据时代下,要想实现更大的业务价值,首先需要解决的就是基础架构问题,基础架构之中存储又是重中之重。当前趋势下,社交媒体、移动互联网、物联网、多媒体应用等趋势兴起使得非结构化、半结构化数据大幅增长,加上传统的结构化数据增长,用户的整体数据量呈现出海量、高增长的状态。如何面对数据源繁多、数据增长速度快速、数据种类丰富化、数据存取形式复杂化以及应用需求多样化就成为当前大部分用户首要面对的挑战和难题。
著名咨询机构麦肯锡认为,大数据是指其大小超出了典型数据库软件的采集、存储、管理和分析等能力的数据集。大数据公认的4V特征包括:容量、类型、速度以及价值(volume、variety、velocity和value)。著名调研机构IDC对于大数据技术定位为:通过高速捕捉、发现和/或分析,从大容量数据中获取价值的一种新的技术架构。另外一方面,我们也可以发现当前对于大数据的一个误区广泛存在于用户之中:当前仍然有很大一部分用户认为新兴起的Hadoop技术、商业智能分析(BI)这些就意味着大数据,他们认为掌控好Hadoop或者BI即可掌控大数据。事实上,大数据不仅仅是Hadoop或者商业智能分析,这些热门技术是大数据分析和处理过程中当前热门的领域,而要想真正实现大数据的价值、为业务发展服务,则需要从全面的角度考虑。
因此,传统存储产品由于自身的设计缺陷,在扩展性方面、与上层应用集成度、高性能、自动化能力、成本等方面已经很难满足大数据诸多的存储特征,根本很难肩负起企业大数据存储、分析以及应用的诸多需求。尤其当前数据的类型丰富程度、容量愈发变大的情况下,并且在业务部门跟IT日益紧密的趋势下,对于数据的存储与分析的速度和性能要求越来越高,对海量数据的快速、高效存储绝对应该是大数据时代存储系统的第一必备要求,否则大数据后续相关的大数据分析、大数据处理都将成为空谈。
看清大数据趋势 不再雾里看花
在大数据时代下,大数据存储产品显然要比传统存储产品考虑更多因素,目前市场中已经有很多专门为大数据应用设计和开发的存储系统,这其中包括国内和国外诸多厂商的产品。虽然有很多产品可供大家参考和选择。但是对于用户而言,能够看清大数据基础架构的发展趋势,则可在基础架构建设方面不再雾里看花。
趋势一:容量大、易扩展。众人皆知,大数据的容量往往是PB级别,甚至有些用户的数据量开始达到EB级别,这要求未来的存储系统能够具备容量大、易扩展的特点。
趋势二:高性能。大数据的一大特征即为速度,要求存储系统能够快速存储数据,因此这要求存储系统的响应速度能够符合大数据的要求。
趋势三:多集成。大数据时代下,数据来源广泛与复杂,不同类型的数据访问、处理和分析的方式不同,这就要求大数据时代下存储系统的接口集成化,使得大数据存储系统能够应对不同的数据需求。
趋势四:自动化。由于大数据使得数据量大幅增加以及数据处理流程、方式更加复杂,给存储系统的管理、维护变得更加复杂。因此,管理自动化也是衡量大数据存储系统的重要趋势。
趋势五:安全可靠。大数据最为核心的价值所在即为数据,因此确保数据的安全可靠也是大数据存储需要重点考虑的因素。保证数据的可用性、完整性和持久化都是未来存储系统所必备的趋势。
趋势六:弹性成本。大数据并不意味着用户必须要在基础架构上一次性投入大额成本,具有弹性、可扩展的存储系统能够帮助用户实现弹性成本,让不同层面的用户都能在大数据浪潮中淘金。
综述
追本溯源,在大数据时代下,我们往往不能只将眼光盯在数据分析与处理层面,用户在尝试大数据解决方案之前,更应从全面角度去审视自身的基础架构是否适合大数据未来的需求与发展——大数据实践,基础架构先行。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31