大数据时代你一定要知道的九件事
大数据已经成为时尚词汇,理解混乱是必然的。对此的九个思考,没有逻辑、没有体系性,纯粹是片段式的,目的是提出问题,思考中。心中无“大师”,一切从现象入手,窃以为“大师”一词仅仅适合于鬼神灵,不适合人。
此思考希冀引起思想碰撞,各种观点,无论是鼓励、批评,甚至攻击,只要发自内心,都能够促进思索。感谢!结合大家的批评与建议,对一些集中问题点进行一些思考后的再补充。
大数据思考之一
任何一个网站的数据都是人们互联网行为数据的很小的一个子集,无论这个子集多么全面,分析多么深入,都是子集,不是全集。对于企业来讲,竞争对手的数据价值远远超过自己网站数据的价值,从量级上,对于所有公司都一样,自己拥有的数据远远小于全集数据。看起来的全数据恰恰是残缺数据。
补充
一些朋友对“竞争对手的数据价值远远超过自己网站数据的价值”的判断是错误的,我虚心接受,知己知彼很重要,实际的意义是“企业的生存关键不在于自己如何,而在于竞争对手如何,自己的事情必须做好”。在此前提下,竞争对手的数据价值远远超过自己网站数据的价值”。
大数据思考之二
数据量的大幅增加会造成结果的不准确,来源不同的信息混杂会加大数据的混乱程度。研究发现:巨量数据集和细颗粒度的测量会导致出现“错误发现”的风险增加。那种认为“假设、检验、验证的科学方法已经过时”的论调,正是大数据时代的混乱与迷茫,人们索性拥抱凯文凯利所称的混乱。
补充
舍恩伯格在《大数据时代》一书中的提出的被广泛接纳的:大数据“没有精确只有混杂,没有因果只有相关”观点是错误的。混杂需要梳理成合理才有分析价值,无论是牛顿、爱因斯坦,还是韦伯的理想类型都是在混杂中找寻分析方法,相关很多时候是没有找到因果之前的认识,因果与过程理解是研究的核心。
大数据思考之三
互联网用户的基本特征、消费行为、上网行为、渠道偏好、行为喜好、生活轨迹与位置等,反映用户的基本行为规律。体系完整是所有分析性工作的第一步,完整的框架甚至胜过高深的模型。人类的认识最大的危险是不顾后果的运用局部知识。如果只关心自己网站数据,其分析基础必然是断裂数据。
补充
断裂数据的危害会在竞争激烈时日益凸显,很多互联网企业以CRM管理系统当成数据挖掘与数据分析系统,观念是错误的,CRM的目的是规范性报表,数据分析与数据挖掘的目的是探索性归纳。
大数据思考之四
现在谈到大数据,基本有四个混乱观念:第一,大数据是全数据,忽视甚至蔑视抽样;第二,连续数据就是大数据;第三,数据量级大是大数据;第四,数据量大好于量小。对应的是:抽样数据只要抽样合理,结论准确;连续只是一个数据结构;大量级的噪音会得出错误结论;大小与价值关系不大。
补充
现实互联网领域被基本关于大数据的书籍所累,观念十分混乱,实际上,人类积累的数据经验是一切分析的基础,包括所谓的海量数据,那几本书的方法论横空出世,同时又没有落地、没有实际操作经验积累,误导性太强。
大数据思考之五
大数据不是新事物,天气、地震、量子物理、基因、医学等都是,借鉴他们的方法有益。他们用抽样调查。互联网数据挖掘方法论也如此,不同的是更难,因为人的复杂性。既然是关于人的研究就需应用所有研究人的方法梳理大数据。只要懂编程、懂调动数据的人就可以做大数据挖掘的说法是谬误。
补充
大数据不是新的,只是出现了新的收集资料的快捷方法,所有关于人的研究方式与分析方法应用于大数据是数据挖掘的核心,调动数据的能力仅仅是技术部分,关系类似导演与剪辑。
大数据思考之六
大数据分析中分析构架为第一要著,算法也极为关键,在最近的大数据处理中发现:解析网址后的分类是是一个难点,主要有几个方面,一个千万人的网络行为数据一天产生的域名大约50000个,虽然有一些算法,但是混淆、难以辨认,连续更新与判别是分析中的重要步骤,简单分易,精细分难。
补充
算法依赖于数据的构架,而算法需要真正理解人的行为。
大数据思考之七
算法中,只要包含文本,就必然有两个关键基础技术:关键词(字典)与语义分析。关键词技术成熟,语义技术是瓶颈,中文语义太难,能解决50%的团队就不错了,尤其是社交语言,比如"真可以!"何解?需上下文。希望风投们多鼓励此类基础技术研发,突破此瓶颈是大数据挖掘的关键点之一。
大数据思考之八
社交数据挖掘中,很多团队集中在运用推特瀑布思路,就是可视化技术,其构图精美值得称道,问题是,其理论还是沿用三十多年前的社会计量法,概念还是局限在点、桥、意见领袖等小群体分析,不适合巨网,突破可视化框架的社交分析需要理论探索和实践努力。
补充
理解社交的意义比结构展示重要。
大数据思考之九
移动互联网对社会生活的影响本质是时间与空间的解构,分析这类大数据需要把握这两点,如果仅仅分析app和网络使用行为,那么分析上就失去了移动的意义。单纯看流量、点击率等简单数字无法解决复杂的营销问题。不创新的延续原有思维模式是人类思考惰性。
补充
互联网和移动互联网是相关的两件事情。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31