“回归分析”是解析“注目变量”和“因于变量”并明确两者关系的统计方法。此时,我们把因子变量称为“说明变量”,把注目变量称为“目标变量址(被说明变量)”。清楚了回归分析的目的后,下面我们以回归分析预测法的步骤来说明什么是回归分析法:1.根据预测目标,确定自变量和因变量
明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。
2.建立回归预测模型
依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。
3.进行相关分析
什么是回归分析法回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。
4.检验回归预测模型,计算预测误差
回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。
5.计算并确定预测值
利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。
回归分析的目的大致可分为两种:第一,“预测”。预测目标变量,求解目标变量y和说明变量(x1,x2,…)的方程。
y=a0+b1x1+b2x2+…+bkxk+误差(方程A)
把方程A叫做(多元)回归方程或者(多元)回归模型。a0是y截距,b1,b2,…,bk是回归系数。当k=l时,只有1个说明变量,叫做一元回归方程。根据最小平方法求解最小误差平方和,非求出y截距和回归系数。若求解回归方程.分別代入x1,x2,…xk的数值,预测y的值。
第二,“因子分析”。因子分析是根据回归分析结果,得出各个自变量对目标变量产生的影响,因此,需要求出各个自变量的影响程度。
希望初学者在阅读接下来的文章之前,首先学习一元回归分析、相关分析、多元回归分析、数量化理论I等知识。
根据最小平方法,使用Excel求解y=a+bx中的a和b。那么什么是最小平方法?
分别从散点图的各个数据标记点,做一条平行于y轴的平行线,相交于图中直线(如下图)
平行线的长度在统计学中叫做“误差”或者‘残差”。误差(残差)是指分析结果的运算值和实际值之间的差。接这,求平行线长度曲平方值。可以把平方值看做边长等于平行线长度的正方形面积(如下图)
最后,求解所有正方形面积之和。确定使面积之和最小的a(截距)和b(回归系数)的值(如下图)。
使用Excel求解回归方程;“工具”→“数据分析”→“回归”,具体操作步骤将在后面的文章中具体会说明。
接着上节的回归分析的目的,我们来根据一个二手车的实例来继续说回归分析。二手车价格的决定因素有:空调类型有无附加品(TV导航导航SR、天窗、空气囊LD TV AW) 行驶距离,颜色车检剩余有效月数、评分拍卖会地点等。
在这14个因子(说明变量)中,最影响价格(目标变量)的是什么?最不影响价格的是什么?通过定量求出影响度,然后根据多个因子(说明变量)预测二手车价格(目标变量)。
可以用方程2表示。二手车价格“这个目标变量数据,既(“空调类型(AC WC)” “有无TV导航”、 、“行驶距离”、 。车检剩余有效月数”, “评分”)。
混合模型混台模型是指因子巾既包含定性数据也包含定量数据的模型。在混台模型中.把“空调”、 “TV导航”等定性因子叫做项目,把数据群(空调的“AC”,“WAC”,TV导航的“有”、“无”)叫做类别。
接下来,根据表l进行回归分析。
这节我们主要告诉大家回归分析前,我们需要先根据自己的思维来了解分析,把这些需要注意的先分析出来,这样对我们接下来的回归分析有很大的帮助。
经过上节,我们了解了回归分析前,我们要先通过思维分析出来需要注意的事项,那么今天接着上一节的课来了解下Excel回归分析需要注意的事项。包含的定性数据,不能直接使用Excel分析,需要将其转换成虚拟变量(也叫O,1数据)。例如, “空调(AC、WAC)”的数据,“AC”用“1”,“WAC”用“O”表示。同样地,“导航(有导航、无导航)”的数据, “有导航”用“1”, “无导航”用“O”表示。表1是根据这种方法转换的(0,1)数据表。直接使用Excel的对表1进行回归分析时,运算结果不理想。理由如下;
以“导航”为例,各行“有导航”+“无导航”=1
此式成立。把公式变形,
“有导航”=1-“无导航”
所以“有导航”是“0”或是“1”,由“无导航。自动决定。
线性代数中发生秩(矩阵秩)亏时,不能正确求出必要的逆矩阵。因此也不能求出回归系数。
由于上述原因,进行回归分析时,需要从各个项目中删除—列因子(表2)。
根据表2的数据进行回归分析,操作步骤如下:1、“工具”一“数据分析”
2、在弹出的“数据分析”对话框中选择“回归”,单击“确定”(图1)。
3、点击“回归”对话框的“Y值输入区域”,选择“二手车价格”的列数据,包括项目名称;接着点击“X值输入区域”,选择从“AC”到“中国、四国、九州”的区域,包括项目名称;选中。标志”,单击“确定”。
(图2)
系统弹出错误信息,不能进行回归分析(图3)。这是因为Excel回归自由度的最大上限是16(P62小知识)。这里的回归自由度是22,因此不能进行回归分析。
统计学中经常出现“自由度”,即有效信息的数量。前面已经提到,在Excel的回归分析中,回归自由度的最大上限是16。回归自由度在(多重)回归分析、数量化理论|、混合模型中具有不同意义。表3是对回归自由度的不同意义的总结。
我们在前面提到过,当回归自由度在17以上时,Excel无法进行回归分析,那么就需要分两次进行回归分析。第一次,把“空调”、“TV导航”、“导航”、“SR”、“天窗”、“空气囊”、“LD”、“TV”、“AW”作为说明变量(表1),第二次,把“颜色”、“拍卖会地点”、“行驶距离”、“车检剩余有效月数”、“评分”作为说明变量(表2),目标变量都是“二手车价格”。
对表1、表2进行回归分析。回归分析的结果分别如表3、表4所示(具体操作步骤将在下一节详细说明)。
图3
图4
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17