怎样管理你的钱 金融行业大数据应用深度分析
1金融行业用户画像
关注PConline企业站的朋友可能了解,此前的文章报道当中笔者和大家聊过大数据技术在教育行业当中的很多应用,我们都知道,现在是一个数据快速爆发的一个发展时代,蕴含很多机遇的同时也给很多IT企业带来了挑战,尤其是一些很多传统企业,就像我们之前聊过的教育行业那样。本期笔者再和大家来聊一个大数据时代背景下发生改变的传统行业,金融行业。
大数据应用金融排第三
根据权威市场研究机构的调查结果显示,当今国内大数据在行业当中的具体应用占比,最高的是互联网行业,其次是电信行业,第三就是金融领域,由此我们不难看出金融行业对于这种新兴IT技术的需求量还是非常庞大的。
根据麦肯锡公司给出的调查报告显示,再把金融行业进行细分的话,银行将会成为金融行业在大数据领域当中的重点应用,证券和保险分别排在第二和第三,当前国内已经很多银行开始通过大数据技术来对业务的推动和发展保驾护航,在一些银行的信用卡中心业务方面就已经实现了利用大数据技术保障实时的业务营销。
金融行业用户画像
当前金融行业在运用大数据技术的过程当中,其实还是存在着一些问题和困扰的,比如,如果某位信用卡客户月均刷卡8次,平均每次刷卡金额800元,平均每年打4次客服电话,从未有过投诉,按照传统的数据分析,该客户是一位满意度较高流失风险较低的客户。但现实的情况却是,该用户的信用卡和工资卡不在同一家银行,还款不方便,好几次打客服电话没接通,客户多次在微博上抱怨,该客户流失风险较高。所以银行不仅仅要考虑银行自身业务所采集到的数据,更应考虑整合外部更多的数据,以扩展对客户的了解。
从上述问题我们不难发现,金融领域在进行大数据技术的植入过程当中,一定要首先通过整合当今的众多新技术,比如社交媒体、比如云端SaaS应用、比如用户在网络上反应的实际问题等等。企业客户的产业链上下游数据。如果银行掌握了企业所在的产业链上下游的数据,可以更好掌握企业的外部环境发展情况,从而可以预测企业未来的状况。
金融企业如何更好的营销
有专家曾经指出,对于金融行业的企业来说,实时营销的方式方法是很重要的,实时营销是根据客户的实时状态来进行营销,比如客户当时的所在地、客户最近一次消费等信息来有针对地进行营销。
还有就是交叉营销的方式,不同业务或产品的交叉推荐,比如一些银行可以根据客户交易记录分析,有效地识别小微企业客户,然后用远程银行来实施交叉销售。
还有一类就是我们平时经常会遇到的方式,那就是根据用户的数据分析出用户的属性和特点,从而进行个性化推荐。银行可以根据客户的喜欢进行服务或者银行产品的个性化推荐,如根据客户的年龄、资产规模、理财偏好等,对客户群进行精准定位,分析出其潜在金融服务需求,进而有针对性的营销推广。
利用大数据更好的优化运营
通过大数据,银行可以监控不同市场推广渠道尤其是网络渠道推广的质量,从而进行合作渠道的调整和优化。同时,也可以分析哪些渠道更适合推广哪类银行产品或者服务,从而进行渠道推广策略的优化。
银行可以将客户行为转化为信息流,并从中分析客户的个性特征和风险偏好,更深层次地理解客户的习惯,智能化分析和预测客户需求,从而进行产品创新和服务优化。
银行可以通过爬虫技术,抓取社区、论坛和微博上关于银行以及银行产品和服务的相关信息,并通过自然语言处理技术进行正负面判断,尤其是及时掌握银行以及银行产品和服务的负面信息,及时发现和处理问题,对于正面信息,可以加以总结并继续强化。
对于像金融、教育等这类传统行业的企业来说,要想植入全新的技术理念和应用其实相比一些互联网行业以及年轻行业要难的多,但是我们不断的发现往往像云计算、大数据这类新兴技术在传统行业当中的应用却更为广泛和迅速,这对于推动整个大数据产业的良性发展是具有非常积极意义的。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21