数据分析产品的下一个进化:基于无埋点的有埋点
一直以来,人们把大数据和埋点技术紧紧捆绑在一起,大数据时代也被称为埋点时代。技术发展,更新更快的无埋点技术横空出世。那么埋点技术是不是就此被判了死刑,无埋点就是万能的了?非也,二者只会进化的更为高级。
为什么这样说呢?其实从埋点技术的诞生和发展不难看出,一切都是源于大数据的发展,对数据的需求更加全面和精准,为适应这种发展,埋点技术不断更新迭代。这也是大数据发展的根源。
埋点的进化发展史
互联网发展起始阶段,用户不关心流量,没有意识到需要检测网站信息,一切都处在野蛮生长的阶段,随着时代的进步,业务也在增长,网站的流量开始增多,这时大家意识到这些数据中蕴含着大量的用户信息,加之用户需求越来越复杂,这时运营人员就需要一些关键的数据作为参考。
比如一些互联网公司,发展到一定程度,都会有专门的数据团队或者兼职数据人员,对公司的一些业务指标负责。同时产品的迭代升级同样需要大量的数据来支撑,如果没有数据指标的支撑,又怎么衡量这个功能升级是不是合理的呢?互联网产品并不是功能越多就越好,产品是否经得起用户考验,还是要基于数据说话的,然后学习新知识,用于下一轮的迭代。于是,埋点就此诞生了!
从埋点发展到今天的无埋点经历三个阶段的升级,第一阶段是代码埋点,最初的埋点是在代码的关键部位植入N行代码,追踪用户的行为,得到想要的数据。挖开产品本身,找到收集点.进行源源不断的传递数据。简单的说,找节点,布代码,收数据。
但随着业务规模扩大,数据需求增多,埋点效率低下,采集成本过高等问题开始暴露,这时候新的埋点技术出现了,即第二阶段框架式埋点。
框架式埋点也称“可视化埋点”。用框架式交互手段来代替纯手工写代码,固化相应代码的做为SDK,方便直接调用.这是一个非常大的进步。框架式埋点很好地解决了代码埋点的埋点代价大和更新代价大两个问题。但框架式埋点能够覆盖的功能有限,关键在于不是所有的控件操作都可以通过这种方案进行定制,而且数据收集难度加大,因此无埋点技术走入了大众的视线。
“无埋点”则是先尽可能收集所有的控件的操作数据,然后再通过界面配置哪些数据需要在系统里面进行分析。“无埋点”相比框架式埋点的优点,一方面是解决了数据“回溯”的问题,另一方面,“无埋点”方案也可以自动获取很多启发性的信息。无埋点大大减少了开发人员的开发成本及技术和业务人员的沟通成本。可以说无埋点技术的出现,最大化的提升了数据收集的速度,大幅缩短了数据收集周期,使得原来不敢想的事情现在敢做了,原来碍于必须有时效性不敢收集的数据也可以迅速进行分析了,在这点上,无埋点技术对传统埋点技术的优势巨大。那么发展到无埋点是否就此为止了呢?答案是否定的。
下一个阶段---无埋点基础上的有埋点
从埋点到无埋点,每个阶段的演变都是顺应时代发展的需求,二者不是简单的被淘汰,而是在原来的基础上更新迭代,回到根源上来说,对数据的全面和精准,也是技术进化的一个催化加。因此我们有理由大胆猜测,数据分析技术只会继续下一个阶段的进化,基于无埋点上的有埋点,支持我们的理由是什么?
首先我们了解一下它的概念,所谓无埋点技术,并不是说完全不用在App中植入代码,而是需要调用SDK代码,在应用页面的加载过程中、点击事件传播过程中、在其中间的某个点自动嵌入监测代码来采集数据。简单来说,就是通过简单的引入一段代码来实现监测。目前主流的APP监测,引入监测方的SDK;网站端监测,则引入监测方的JS文件,通过引入的SDK或者JS文件来实现对APP或者网站的流量、页面热点、用户数等等这类基础数据的统计分析。因此无埋点,并非完全不埋点,只是少埋点,不是大家理解的不埋任何代码就能实现监测,无埋点不能脱离有埋点独立存在的。
其次,虽然无埋点看似十分先进,但也同样存在一些弊端,不能灵活地自定义属性,传输时效性和数据可靠性欠佳,由于所有的控件事件都全部搜集,给服务器和网络传输带来更大的负载;现有的无埋点技术并非官方标准方案,有可能在未来无法使用;监测需求相对比较基础,更多的是依据流量、用户、热点的一些分析统计,不涉及到一些自定义、或者更细化的统计分析,比如每个订单、会员的监测;或者页面存在jQuery时对页面热点的监测。
比如我们以APP来说,APP所有新闻页、产品详情页的类名都是一个,那么无埋点就无法区分不同新闻页或者产品详情页的数据,这就影响到了数据的精准,这种情况下就需要添加代码来实现。
就比如城市要铺设新的业务管道,那必须开挖路面,光看是不行的,同时要计量或控制管道的流量大小,知道管道里的流动情况,就必须在相应的节点上装相应的阀门,这就好像埋点一样。
有时一些特殊需求或者特殊格式,也需要额外手动发送请求代码来实现,比如滚动条高度、及其它稍复杂的监控都无法做到,如果需要采集全方位的数据进行更专业的分析,仍需要靠开发人员来埋点配置。
可见,无埋点在数据监测中并不能做到全面。这就注定埋点技术不会安安静静的选择“狗带”,无埋点技术又不是吹嘘的十分万能。实现全面监测,将二者有效的结合在一起才是发展的正理。
因此在基于无埋点的基础上,通过一些手动发送请求方式(也就是所谓的埋点),来实现全面监测,这是目前行业需求和技术发展的主流方向,这种技术既解决了数据分析中的弊端,又确保了数据的精准性,同时也具备很强的扩展性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29