从三大行业看大数据应用的三重境界:数据、分析、成果
各行各业在大数据的应用上可以说是已经渐入佳境,资产管理、运营优化、风险管理等都已经有数据分析参与其中,当然这个过程最重要的还是从业务场景出发让数据真正产生价值。
Teradata把企业数据分析分为四个重要领域——客户体验、多元化数据分析、异构数据整合、海量的业务规模。做好这些也就可以实现大数据应用的三重境界:“数据、分析、成果”。
但在各种因素的影响下,企业在数据应用的过程中也会遇到三大挑战:一、业务层面,在业务场景中分析改进;二、人才层面,人才资源压力是每一个企业都面临的问题;三、架构层面,需要考虑架构的高性能、敏捷性、可扩展性以及成本等因素。
Teradata则可以提供业务分析解决方案、生态系统架构咨询、混合云解决方案。Teradata天睿公司大中华区副总裁、咨询及服务部门总经理唐青(Janet Tang)说,我们希望从业务的视角回答客户的问题,同时我们还有成熟的业务框架和咨询团队,最后就是支撑混合云能力,实现跨平台的输出。
当然大型企业和中小型企业的大数据实施不尽相同,Teradata天睿公司北京金融团队咨询服务部总监张天峰指出,中小企业一般的步骤是诊断、规划、路线图、速赢,重点是找到典型业务场景,扎实落地,实现速赢。
三大行业大数据实战
航空、快递、金融是三个非常典型的服务业,他们都具备数据驱动的特点,三个案例作为行业中的缩影,可以更好地了解大数据在行业中的应用模式和方法。
航空
消费者在选择航空公司时通常会更关心服务和价格,“十三五规划”对于航空业的规划是要在2020年将整体航运能力提升60%。在面对运力上升,运价透明等市场挑战下,航空公司如何做到把握趋势创造市场需求?
基于大数据分析,航空业还有很多业务提升的机会,如航空公司的航线规划,可以通过大数据来分析客流、成本、机型。再比如,有些航班上座率不高,可以使用大数据分析来设计航班的合并取消优化策略以提升运营效率。
航空公司通过算法预测趋势制定经营策略,做到最优的运力和运价。在运价上通过竞争分析、客户预测等一系列数据进行分析。
快递
快递行业在近几年可以称得上是黄金年代,在快速的成长后快递行业逐渐进入到成熟期,这就需要构建健全的管理体系,来面对激烈的市场竞争带来的盈利压力。
快递行业收益管理的三要素是成本分析、网点细分和价格策略。在唐青看来快递业比航空业的竞争更加惨烈,因为快递的供应链长且参与者多,所以要在各个环节上进行优化。
某快递公司的问题是其有很多加盟企业,如何让加盟企业的销售和成本同时纳入到整体管理中。企业最终实现大数据的收集和分析,帮助进行业务的决策,例如成本分析、网点特性、价格体系、预演分析、试点落地、回顾评审、市场(产品)推广等。
金融
金融行业是一个最容易流失客户的行业,原来的银行是以开设更多网点来吸纳客户,现在则需要多种产品组合来打动客户。
某银行基于市场环境提出了二次转型的目标,以客户为中心优化整个营销体系,实现客户精细化管理。识别出客户需要哪些产品,未来需要开拓哪些潜在客户,同时进行客户分级。利用数据分析从产品视角、客户视角得到新的业务商机。Teradata可以帮助金融行业识别客户属于哪一生命周期,通过客户标签系统识别客户行为,最终制定营销策略。
银行的数据基础相对较好,但是依然有很多数据的空白,像市场数据、征信数据,这对于产品成本的核算、定价带来挑战,这需要更多外部数据的补充完善分析结果。
上述三个行业都属于B2C领域,当然服务业除了个人业务还有对公业务。由于业务类型的不同,关注点也有所不同,个人业务更多以客户生命周期来讨论,对公业务更多和监管相关。唐青提到,个人业务更注重交易行为,在结合大数据的可能性上也更加丰富,在风险管控、创新点都走的更为靠前。
现在很多大型企业都把大数据用在精细化运营上,精细化运营对于企业来讲也是一个永久不变的话题,只不过之前太过粗放的管理模式,以及利润率的逐渐降低,也让现阶段的精细化运营显得非常重要,需要通过数据分析提升效率。
Teradata天睿公司华东区咨询服务部专业服务总监陈焰表示,开源、节流越来越要求从数据层面开始解决,例如物流公司看到哪一个航线的收益率更大,这些归根结底都是企业对盈利能力要求的提升。
在精细化运营的同时,企业利用数据分析的最终目的还是实现商业模式的创新。像航空公司基于“一带一路”战略开拓新航线,电信公司寻找数据变现的价值等等。Teradata也在通过其专业服务团队帮助企业建立创新实验室,真正可以创造出新的业务,让数据产生价值的同时实现最大化利用进行变现。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21