大数据价值挖掘之道:人工智能成新宠
人工智能自1943年诞生以来,在几十年的发展历程中经历了多次潮起潮落,人们却从未停止过对人工智能的研究与探索。而今年的AlphaGo人机大战又将人工智能推向了一个新的高潮,人工智能也已经从实验室逐步走向了商业化。
在互联网和移动互联网的新生态环境下,云计算、大数据、深度学习和人脑芯片等因素正在推动着人工智能的大发展。未来大数据将成为智能机器的基础,通过深度学习从海量数据中获取的内容,将赋予人工智能更多有价值的发现与洞察,而人工智能也将成为进一步挖掘大数据宝藏的钥匙,助力大数据释放具备人类智慧的优越价值。那么,在未来,人工智能会向着什么方向发展?人工智能真的能够超越人类吗?
近日,由百分点集团、中国人民大学、北京大学、伦敦政治经济学院与统计之都共同主办的中国最大的大数据盛会“大统计与数据科学联合会议”在北京召开。在百分点集团与北京大学携手举办的“2016百分点数据与价值国际论坛”上,北京大学数学学院信息科学系教授林作铨、大规模机器学习专家王益、中科院模式识别国家重点实验室副研究员刘康等学者和专家,与百分点集团研发总监苏海波一起分享了知识表示、深度学习、自然语言处理等人工智能的相关技术与应用,同时还共同探讨了大数据的应用创新及最新趋势。
人工智能大讨论:深度学习+大数据,一个都不能少
如今人工智能产业格局的生态圈正在逐渐清晰化,整个产业结构分为基础、技术和应用三层,基础层指的是芯片开发、存储设备开发和计算平台等,譬如地平线机器人和百度大脑就处于这一层;技术层指的是基于深度学习的语音识别、人脸识别等智能算法,譬如科大讯飞、商汤科技;应用层指基于技术层为用户提供智能化的服务和产品,譬如小i机器人、出门问问。
北京大学数学学院信息科学系教授林作铨认为:“人工智能的原始目标有两个:一个是要通过计算机来模拟人的智能行为,来探讨智能的基本原理,这是真正关心的问题。第二个目标是把计算机做得更聪明,计算机变得更聪明,我们人就可以更傻,就是体验更好。”
随着搜索引擎的飞速发展,将互联网文本内容结构化,从中抽取有用的概念、实体,建立这些实体间的语义关系,并与已有多源异构知识库进行关联,从而构建大规模知识图谱,对于文本内容的语义理解以及搜索结果的精准化有着重要的意义。然而,如何以自然语言方式访问这些结构化的知识图谱资源,构建深度问答系统是摆在众多研究者和开发者前的一个重要问题。
对此,中科院模式识别国家重点实验室副研究员刘康表示:“我们做问答其实是想用人工智能的技术来做这样的问题,不管是检索式问答还是社区QA的问答,都是基于关键词的匹配和检索,其实很难做到对于数据真正的结构化的理解。问答的脉络可分为三类:一是基于检索式的问答,二是基于关键词检索或者是语义匹配的技术,三是基于知识库的问答系统,核心就是语义解析和推理。目前,深度学习在自然语言理解领域,还有很长的一段路要走。”
在论坛中,大规模机器学习专家王益分享了关于“通用计算机群和分布式机器学习”的主题,他表示,当我们说大数据的时候,不同行业有不同的说法,在互联网行业,凡是能说出有多大的数据的都不是大数据,互联网行业的数据是无穷无尽的。而要真正用好这些数据就一定会用到分布式存储和计算。实际上,在互联网和大数据环境下,首要目标是“能算大”.而“大”不是“算得快”就能做到的,而是要能形成业务闭环--运行Web服务、收集用户行为数据、通过机器学习理解用户、将学习得到的“知识”反馈到Web服务中以提升服务质量。
针对人工智能跟大数据到底是一个什么关系的问题上,百分点集团研发总监苏海波表示,人工智能给大数据带来的更多的是基于,而不仅仅是挑战。大数据对人工智能更多是一种推动,推动人工智能的发展。如今,人工智能已经开始慢慢深入到各个领域,我们能够利用人工智能技术,去提高我们的效率,去辅助人类,帮助我们进行洞察,做出正确的决定。
看百分点大数据价值挖掘之道
如今,大数据技术正在不断向各行各业进行渗透。深度学习、实时数据分析和预测、人工智能等大数据技术逐渐改变着原有的商业模式,推动着互联网和传统行业发生着日新月异地变化。但与此同时,非结构化数据难以利用,数据与实际商业价值不匹配的现象在很多企业依然存在,只有不断推进大数据技术与场景创新,才能真正推动大数据应用的不断落地。
为了帮助企业用户挖掘大数据价值,百分点打造了涵盖大数据技术层、管理层和应用层的完整产品体系,能通过大数据操作系统(BD-OS)、用户画像标签管理系统,以及应用层的推荐引擎、分析引擎和营销引擎,帮助企业更好的管理数据资产,全方位的搜集用户数据、进行深度整合,并借助数据分析对用户行为进行精准的洞察、分析,为企业的产品研发、经营策略制定提供坚实的数据支撑,从而更好地实现从粗放型营销向精准营销的转变。
百分点集团研发总监苏海波表示:“针对传统企业,我们要提倡互联网+,以互联网+大数据为基础,帮助传统企业提升效率,帮助他们挖掘数据价值,从而提升业务价值。”
与传统的数据管理系统相比,百分点大数据系统具有技术、应用、数据这三大核心竞争力,还创新的整合了标签体系、用户画像,用户群管理、数据输出、审计管理,智能推荐、价值分析等功能,系统能够通过企业全触点、全渠道用户数据整合,多维度洞察用户特征,满足全面性、深入性、易用性这三个维度的大数据应用要求。
写在最后,我相信,未来五年是人工智能进入各个垂直领域的加速期,“人工智能+”将引领产业变革,金融、制造、安防等领域将会诞生新的业态和商业模式,从而更好的实现信息技术由IT向DT的转变。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13