深入理解Python中变量赋值的问题
在Python中变量名规则与其他大多数高级语言一样,都是受C语言影响的,另外变量名是大小写敏感的。
Python是动态类型语言,也就是说不需要预先声明变量类型,变量的类型和值在赋值那一刻被初始化,下面详细介绍了Python的变量赋值问题,一起来学习学习吧。
我们先看一下如下代码:
c = {}
def foo():
f = dict(zip(list("abcd"), [1, 2 ,3 ,4]))
c.update(f)
if __name__ == "__main__":
a = b = d = c
b['e'] = 5
d['f'] = 6
foo()
print(a)
print(b)
print(c)
print(d)
输出结果:
{'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4, 'f': 6}
{'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4, 'f': 6}
{'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4, 'f': 6}
{'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4, 'f': 6}
如果你对以上输出结果不感到奇怪,那么就不必往下看了。实际上本文要讨论的内容非常简单,不要为此浪费您宝贵的时间。
Python属于动态语言,程序的结构可以在运行的过程中随时改变,而且 python 还是弱类型的语言,所以如果你是从静态、强类型编程语言转过来的,理解起Python的赋值,刚开始可能会感觉有些代码有点莫名其妙。
可能你会以为上面代码的输出会是这样的:
{}
{'e': 5}
{}
{'f': 6}
你可能认为 a 没有被改变,因为没有看到哪里对它做了改变;b 和 d 的改变是和明显的;c 呢,因为是在函数内被改变的,你可能认为 c 会是一个局部变量,所以全局的 c 不会被改变。
实际上,这里的 a, b, c, d 同时指向了一块内存空间,这可内存空间保存的是一个字典对象。这有点像 c 语言的指针,a, b, c, d 四个指针指向同一个内存地址,也就是给这块内存其了 4 个笔名。所以,不管你改变谁,其他三个变量都会跟着变化。那为什么 c 在函数内部被改变,而且没有用 global 申明,但全局的 c 去被改变了呢?
我们再来看一个例子:
>>>a = {1:1, 2:2}
>>>b = a
>>>a[3] = 3
>>>b
{1: 1, 2: 2, 3: 3}
>>>a = 4
>>>b
{1: 1, 2: 2, 3: 3}
>>>a
4
当 b = a 时,a 与 b 指向同一个对象,所以在 a 中添加一个元素时,b 也发生变化。而当 a = 4 时, a 就已经不再指向字典对象了,而是指向一个新的 int 对象(python 中整数也是对象),这时只有 b 指向字典,所以 a 改变时 b 没有跟着变化。这是只是说明了什么时候赋值变量会发生质的改变,而以上的问题还没有被解决。
那么,我么再来看一个例子:
class TestObj(object):
pass
x = TestObj()
x.x = 8
d = {"a": 1, "b": 2, "g": x}
xx = d.get("g", None)
xx.x = 10
print("x.x:%s" % x.x)
print("xx.x: %s" % xx.x)
print("d['g'].x: %s" % d['g'].x)
# Out:
# x.x:10
# xx.x: 10
# d['g'].x: 10
由以上的实例可以了解到,如果仅改变对象的属性(或者说成是改变结构),所有指向该对象的变量都会随之改变。但是如果一个变量重新指向了一个对象,那么其他指向该对象的变量不会随之变化。所以,最开始的例子中,c 虽然在函数内部被改变,但是 c 是全局的变量,我们只是在 c 所指向的内存中添加了一个值,而没有将 c 指向另外的变量。
需要注意的是,有人可能会认为上例中的最后一个输出应该是 d['g'].x: 8。 这样理解的原因可能是觉得已经把字典中 ‘g' 所对应的值取出来了,并重新命名为 xx,那么 xx 就与字典无关了。其实际并不是这样的,字典中的 key 所对应的 value 就像是一个指针指向了一片内存区域,访问字典中 key 时就是去该区域取值,如果将值取出来赋值给另外一个变量,例如 xx = d['g'] 或者 xx = d.get("g", None),这样只是让 xx 这个变量也指向了该区域,也就是说字典中的键 ‘g' 和 xx 对象指向了同一片内存空间,当我们只改变 xx 的属性时,字典也会发生变化。
下例更加直观的展示了这一点:
class TestObj(object):
pass
x = TestObj()
x.x = 8
d = {"a": 1, "b": 2, "g": x}
print(d['g'].x)
xx = d["g"]
xx.x = 10
print(d['g'].x)
xx = 20
print(d['g'].x)
# Out:
# 8
# 10
# 10
这个知识点非常简单,但如果没有理解,可能无法看明白别人的代码。这一点有时候会给程序设计带来很大的便利,例如设计一个在整个程序中保存状态的上下文:
示例中我们可以把需要保存的状态添加到 context 中,这样在整个程序的运行过程中这些状态能够被任何位置被使用。
在来一个终结的例子,执行外部代码:
outer_code.py
main_exec.py
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21