人工智能时代,深度学习和大数据变得密不可分
人工智能时代,深度学习和大数据成了密不可分的一对儿。深度学习可以从大数据中挖掘出以往难以想象的有价值的数据、知识或规律。简单来说,有足够的数据作为深度学习的输入,计算机就可以学会以往只有人类才能理解的概念或知识,然后再将这些概念或知识应用到之前从来没有看见过的新数据上。
《智能时代》的作者吴军博士说:“在方法论的层面,大数据是一种全新的思维方式。按照大数据的思维方式,我们做事情的方式与方法需要从根本上改变。”
谷歌的围棋程序AlphaGo已经达到了人类围棋选手无法达到的境界。没有人可以与之竞争,这是因为AlphaGo在不断进行学习。AlphaGo不但从人类专业选手以往的数百万份棋谱中学习,还可以从自己和自己的对弈棋谱中学习。人类专业选手的对局、AlphaGo自己与自己的对局,这些都是AlphaGo赖以学习提高的大数据。
基于大数据的深度学习到底如何在现实生活中发挥作用呢?一个非常好的例子是,计算机可以通过预先学习成千上万张人脸图片,掌握认识和分辨人脸的基本规律。然后,计算机可以记住全国所有通缉犯的长相。没有一个单独的人类警察可以做到这一点。这样一来,只要通缉犯在公共场合一露面,计算机就可以通过监控摄像头采集的图像将通缉犯辨认出来。大数据和深度学习一起,可以完成以前也许需要数万名人类警察才能完成的任务。
任何拥有大数据的领域,我们都可以找到深度学习一展身手的空间,都可以做出高质量的人工智能应用。任何有大数据的领域,都有创业的机会。
金融行业有大量客户的交易数据,基于这些数据的深度学习模型可以让金融行业更好地对客户进行风险防控,或针对特定客户进行精准营销;电子商务企业有大量商家的产品数据和客户的交易数据,基于这些数据的人工智能系统可以让商家更好地预测每月甚至每天的销售情况,并提前做好进货准备;城市交通管理部门拥有大量交通监控数据,在这些数据的基础上开发的智能交通流量预测、智能交通疏导等人工智能应用正在大城市中发挥作用;大型企业的售后服务环节拥有大规模的客服语音和文字数据,这些数据足以将计算机训练成为满足初级客服需要的自动客服员;教育机构拥有海量的课程设计、课程教学数据,针对这些数据训练出来的人工智能模型可以更好地帮助老师发现教学中的不足……
需要注意的是,大数据和人工智能的结合也可能给信息流通和社会公平带来威胁。在2016年的美国大选中,有一家名为Cambridge Analytica的公司就基于人工智能技术,用一整套分析和引导舆论的软件系统来操纵选情。这个系统可以自动收集和分析互联网上的选情信息,评估人们对两位总统候选人的满意度,并通过给定向用户投放信息,自动发送虚假新闻等技术手段,宣传自己所支持的候选人,还可以通过A/B组对照试验,准确判断每个州的选民特征,为自己所支持的竞选团队提供第一手的数据资料和决策依据。美国伊隆大学的助理教授兼数据科学家乔纳森·奥尔布赖特不无忧虑地说:“这简直就是台宣传机器。它一个个地拉拢公众,使他们拥护某个立场。如此程度的社会工程,我还是头一次见……”
此外,在大数据发挥作用的同时,人工智能研发者也一定不要忘了,大数据的应用必然带来个人隐私保护方面的挑战。为了给你推送精准的广告信息,就要收集你的购买习惯、个人喜好等数据,这些数据中往往包含了许多个人隐私;为了获得以人类基因为基础的医疗大数据来改进疾病的诊疗,就要通过某种渠道收集尽可能多的人类基因样本,而这些数据一旦保管不善,就可能为提供基因样本的个人带来巨大风险;为了建立智能城市,就要监控和收集每个人、每辆车的出行信息,而这些信息一旦被坏人掌握,往往就会成为案犯最好的情报来源……
有效、合法、合理地收集、利用、保护大数据,是人工智能时代的基本要求,需要政府、企业、个人三方共同协作,既保证大规模信息的正常流动、存储和处理,又避免个人隐私被滥用或被泄露。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21