R语言对回归模型进行回归诊断
在R语言中,对数据进行回归建模是一件很简单的事情,一个lm()函数就可以对数据进行建模了,但是建模了之后大部分人很可能忽略了一件事情就是,对回归模型进行诊断,判断这个模型到低是否模型的假定;如果不符合假定,模型得到的结果和现实中会有巨大的差距,甚至一些参数的检验因此失效。
因为在对回归模型建模的时候我们使用了最小二乘法对模型参数的估计,什么是最小二乘法,通俗易懂的来说就是使得估计的因变量和样本的离差最小,说白了就是估计出来的值误差最小;但是在使用最小二乘法的前提是有几个假设的。
这里我就引用《R语言实战》的内容了,在我大学中的《计量经济学》这本书讲的更为详细,不过这里主要是介绍使用R语言对模型进行回归诊断,所以我们就不说太详细了;
假定
正态性:对于固定的自变量值,因变量值成正态分布,也就是说因变量的是服从正态分布的
独立性:Yi值之间相互独立,也就是说Yi之间不存在自相关
线性:因变量和自变量是线性相关的,如果是非线性相关的话就不可以了
同方差:因变量的方法不随着自变量的水平还不同而变化,也可称之为同方差
为了方便大家使用和对照,这里就使用书上的例子给大家介绍了,在系统自带的安装包中women数据集,我们就想通过身高来预测一下体重;在做回归诊断之前我们得先建模;
首先我们先看一下数据是长什么样子的,因为我们不能盲目的拿到数据后建模,一般稍微规范的点流程是先观察数据的分布情况,判断线性相关系数,然后在考虑是否建立回归模型,然后在进行回归诊断;
R代码如下:
data('women')
women
结果如下
初步观察数据大概告诉我们体重就是跟随着身高增长而增长的,再通过画一下散点图观察。
R代码如下
plot(women)
然后我们在判断一下各个变量之间的线性相关系数,然后再考虑要不要建模
R代码如下
cor(women)
结果如下
从相关系数的结果上看,身高和体重的相关程度高达0.9954,可以认为是完全有关系的。
根据以上的判断我们认为可以建立模型去预测了,这时候我们使用LM()函数去建模,并通过summary函数去得到完整的结果。
R代码如下
model <- lm(weight~height,data=women)
summary(model)
出现这个问号原因是由于电脑字符集问题;稍微解读一下这个结果,RESIDUALS是残差的五分位数,不知道五分位的可以百度一下,这里不多说,下面的结果height的回归系数是3.45,标准差是0.09114,T值为37.85,P值为1.09e-14,并显著通过假设检验,残差的标准差为1.525,可决系数为0.991,认为自变量可以解释总体方差的99.1%,调整后的可决系数为0.9903,这是剔除掉自变量的个数后的可决系数,这个比较有可比性,一般我都看这个调整后的可决系数。结果就解读那么多,因此得到的结果就是
上面只是借用了一个小小例子来讲解了一下R语言做回归模型的过程,接下来我们将一下如何进行回归诊断,还是原来的那个模型,因为使用LM函数中会有一些对结果评价的内容,因此我们用PLOT函数将画出来;
R代码如下
par(mfrow=c(2,2))
plot(model)
结果如下
左上:代表的残差值和拟合值的拟合图,如果模型的因变量和自变量是线性相关的话,残差值和拟合值是没有任何关系的,他们的分布应该是也是在0左右随机分布,但是从结果上看,是一个曲线关系,这就有可能需要我们家一项非线性项进去了
右上:代表正态QQ图,说白了就是标准化后的残差分布图,如果满足正态假定,那么点应该都在45度的直线上,若不是就违反了正态性假
左下:位置尺度图,主要是检验是否同方差的假设,如果是同方差,周围的点应该随机分布
右下:主要是影响点的分析,叫残差与杠杆图,鉴别离群值和高杠杆值和强影响点,说白了就是对模型影响大的点
根据左上的图分布我们可以知道加个非线性项,R语言实战里面是加二次项,这里我取对数,主要是体现理解
R代码如下
model1 <- lm(weight~height+log(height),data=women)
plot(model1)
summary(model1)
结果如下
诊断图
模型拟合结果图
综合起来我们新模型貌似更优了;我就介绍到这里,具体大家可以看书籍
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21