Python的Bottle框架基本知识总结
这篇文章主要介绍了Python的Bottle框架基本知识总结,本文翻译自Bottle官方开发文档,需要的朋友可以参考下
基本映射
映射使用在根据不同URLs请求来产生相对应的返回内容.Bottle使用route() 修饰器来实现映射.
from bottle import route, run
@route('/hello')
def hello():
return "Hello World!"
run() # This starts the HTTP server
运行这个程序,访问http://localhost:8080/hello将会在浏览器里看到 "Hello World!".
GET, POST, HEAD, ...
这个射装饰器有可选的关键字method默认是method='GET'. 还有可能是POST,PUT,DELETE,HEAD或者监听其他的HTTP请求方法.
from bottle import route, request
@route('/form/submit', method='POST')
def form_submit():
form_data = request.POST
do_something(form_data)
return "Done"
动态映射
你可以提取URL的部分来建立动态变量名的映射.
@route('/hello/:name')
def hello(name):
return "Hello %s!" % name
默认情况下, 一个:placeholder会一直匹配到下一个斜线.需要修改的话,可以把正则字符加入到#s之间:
@route('/get_object/:id#[0-9]+#')
def get(id):
return "Object ID: %d" % int(id)
或者使用完整的正则匹配组来实现:
@route('/get_object/(?P<id>[0-9]+)')
def get(id):
return "Object ID: %d" % int(id)
正如你看到的,URL参数仍然是字符串, 即使你正则里面是数字.你必须显式的进行类型强制转换.
@validate() 装饰器
Bottle 提供一个方便的装饰器validate() 来校验多个参数.它可以通过关键字和过滤器来对每一个URL参数进行处理然后返回请求.
from bottle import route, validate
# /test/validate/1/2.3/4,5,6,7
@route('/test/validate/:i/:f/:csv')
@validate(i=int, f=float, csv=lambda x: map(int, x.split(',')))
def validate_test(i, f, csv):
return "Int: %d, Float:%f, List:%s" % (i, f, repr(csv))
你可能需要在校验参数失败时抛出ValueError.
返回文件流和JSON
WSGI规范不能处理文件对象或字符串.Bottle自动转换字符串类型为iter对象.下面的例子可以在Bottle下运行, 但是不能运行在纯WSGI环境下.
@route('/get_string')
def get_string():
return "This is not a list of strings, but a single string"
@route('/file')
def get_file():
return open('some/file.txt','r')
字典类型也是允许的.会转换成json格式,自动返回Content-Type: application/json.
@route('/api/status')
def api_status():
return {'status':'online', 'servertime':time.time()}
你可以关闭这个特性:bottle.default_app().autojson = False
Cookies
Bottle是把cookie存储在request.COOKIES变量中.新建cookie的方法是response.set_cookie(name, value[, **params]). 它可以接受额外的参数,属于SimpleCookie的有有效参数.
from bottle import response
response.set_cookie('key','value', path='/', domain='example.com', secure=True, expires=+500, ...)
设置max-age属性(它不是个有效的Python参数名) 你可以在实例中修改 cookie.SimpleCookie in response.COOKIES.
from bottle import response
response.COOKIES['key'] = 'value'
response.COOKIES['key']['max-age'] = 500
模板
Bottle使用自带的小巧的模板.你可以使用调用template(template_name, **template_arguments)并返回结果.
@route('/hello/:name')
def hello(name):
return template('hello_template', username=name)
这样就会加载hello_template.tpl,并提取URL:name到变量username,返回请求.
hello_template.tpl大致这样:
<h1>Hello {{username}}</h1>
<p>How are you?</p>
模板搜索路径
模板是根据bottle.TEMPLATE_PATH列表变量去搜索.默认路径包含['./%s.tpl', './views/%s.tpl'].
模板缓存
模板在编译后在内存中缓存.修改模板不会更新缓存,直到你清除缓存.调用bottle.TEMPLATES.clear().
模板语法
模板语法是围绕Python很薄的一层.主要目的就是确保正确的缩进块.下面是一些模板语法的列子:
%...Python代码开始.不必处理缩进问题.Bottle会为你做这些.
%end关闭一些语句%if ...,%for ...或者其他.关闭块是必须的.
{{...}}打印出Python语句的结果.
%include template_name optional_arguments包括其他模板.
每一行返回为文本.
Example:
%header = 'Test Template'
%items = [1,2,3,'fly']
%include http_header title=header, use_js=['jquery.js', 'default.js']
<h1>{{header.title()}}</h1>
<ul>
%for item in items:
<li>
%if isinstance(item, int):
Zahl: {{item}}
%else:
%try:
Other type: ({{type(item).__name__}}) {{repr(item)}}
%except:
Error: Item has no string representation.
%end try-block (yes, you may add comments here)
%end
</li>
%end
</ul>
%include http_footer
Key/Value数据库
Bottle(>0.4.6)通过bottle.db模块变量提供一个key/value数据库.你可以使用key或者属性来来存取一个数据库对象.调用 bottle.db.bucket_name.key_name和bottle.db[bucket_name][key_name].
只要确保使用正确的名字就可以使用,而不管他们是否已经存在.
存储的对象类似dict字典, keys和values必须是字符串.不支持 items() and values()这些方法.找不到将会抛出KeyError.
持久化
对于请求,所有变化都是缓存在本地内存池中. 在请求结束时,自动保存已修改部分,以便下一次请求返回更新的值.数据存储在bottle.DB_PATH文件里.要确保文件能访问此文件.
Race conditions
一般来说不需要考虑锁问题,但是在多线程或者交叉环境里仍是个问题.你可以调用 bottle.db.save()或者botle.db.bucket_name.save()去刷新缓存,但是没有办法检测到其他环境对数据库的操作,直到调用bottle.db.save()或者离开当前请求.
Example
from bottle import default_app, run
app = default_app()
newapp = YourMiddleware(app)
run(app=newapp)
from bottle import route, db
@route('/db/counter')
def db_counter():
if 'hits' not in db.counter:
db.counter.hits = 0
db['counter']['hits'] += 1
return "Total hits: %d!" % db.counter.hits
使用WSGI和中间件
bottle.default_app()返回一个WSGI应用.如果喜欢WSGI中间件模块的话,你只需要声明bottle.run()去包装应用,而不是使用默认的.
默认default_app()工作
Bottle创建一个bottle.Bottle()对象和装饰器,调用bottle.run()运行. bottle.default_app()是默认.当然你可以创建自己的bottle.Bottle()实例.
from bottle import Bottle, run
mybottle = Bottle()
@mybottle.route('/')
def index():
return 'default_app'
run(app=mybottle)
发布
Bottle默认使用wsgiref.SimpleServer发布.这个默认单线程服务器是用来早期开发和测试,但是后期可能会成为性能瓶颈.
有三种方法可以去修改:
使用多线程的适配器
负载多个Bottle实例应用
或者两者
多线程服务器
最简单的方法是安装一个多线程和WSGI规范的HTTP服务器比如Paste, flup, cherrypy or fapws3并使用相应的适配器.
from bottle import PasteServer, FlupServer, FapwsServer, CherryPyServer
bottle.run(server=PasteServer) # Example
如果缺少你喜欢的服务器和适配器,你可以手动修改HTTP服务器并设置bottle.default_app()来访问你的WSGI应用.
def run_custom_paste_server(self, host, port):
myapp = bottle.default_app()
from paste import httpserver
httpserver.serve(myapp, host=host, port=port)
多服务器进程
一个Python程序只能使用一次一个CPU,即使有更多的CPU.关键是要利用CPU资源来负载平衡多个独立的Python程序.
单实例Bottle应用,你可以通过不同的端口来启动(localhost:8080, 8081, 8082, ...).高性能负载作为反向代理和远期每一个随机瓶进程的新要求,平衡器的行为,传播所有可用的支持与服务器实例的负载.这样,您就可以使用所有的CPU核心,甚至分散在不同的物理服务器之间的负载。.
但也有点缺点:
多个Python进程里不能共享数据.
同一时间可能需要大量内存来运行Python和Bottle应用和副本.
最快的一个负载是pound当然其他一些HTTP服务器同样可以做的很好.
不久我会加入lighttpd和Apache使用.
Apache mod_wsgi
发布你的应用当然不是用Bottle自带的方法,你可以再Apache server使用 mod_wsgi模板和Bottles WSGI接口.
你需要建立app.wsgi文件并提供 application对象.这个对象是用使用mod_wsgi启动你的程序并遵循WSGI规范可调用.
# /var/www/yourapp/app.wsgi
import bottle
# ... add or import your bottle app code here ...
# import myapp
application = bottle.default_app()
# Do NOT use bottle.run() with mod_wsgi
Apache配置可能如下:
<VirtualHost *>
ServerName example.com
WSGIDaemonProcess yourapp user=www-data group=www-data processes=1 threads=5
WSGIScriptAlias / /var/www/yourapp/app.wsgi
<Directory /var/www/yourapp>
WSGIProcessGroup yourapp
WSGIApplicationGroup %{GLOBAL}
Order deny,allow
Allow from all
</Directory>
</VirtualHost>
Google AppEngine
import bottle
from google.appengine.ext.webapp import util
# ... add or import your bottle app code here ...
# import myapp
# Do NOT use bottle.run() with AppEngine
util.run_wsgi_app(bottle.default_app())
CGI模式
运行缓缓,但可以正常工作.
import bottle
# ... add or import your bottle app code here ...
bottle.run(server=bottle.CGIServer)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29