大数据、物联网、智慧城市三者之间的关系简单来说就是:大数据的发展源于物联网技术的应用,并用于支撑智慧城市的发展。物联网技术作为互联网应用的拓展,正处于大发展阶段。物联网是智慧城市的基础,但智慧城市的范畴相比物联网而言更为广泛;智慧城市的衡量指标由大数据来体现,大数据促进智慧城市的发展;物联网是大数据产生的催化剂,大数据源于于物联网应用。
中国已步入大数据时代
有人说大数据来了,但只是在美国而不是中国。专做政府数据管理的同方对此的看法是:中国对大数据的理解普遍还不那么深入或者与美国的理解有所不同,但不能否认的是,中国已经步入大数据时代。现在中国的很多部委都已经在研究大数据、运用大数据。美国将大数据提升为国家战略,中国还没有明确提出,但已经把大数据上升为与国防一样的高度,多部委还联合发布了鼓励措施。我国政府对大数据的敏感度快速提高,并正在采取措施。所以说,中国已经步入大数据时代,这种重视是由政府层面自上而下进行普及的,可能还未普及到普通百姓层面,但各级政府已经有了高度重视。邬贺铨院士也曾表示:“我国将产生全球最大量的数据,要重视大数据的开发利用和管理。”
大数据的关键在于分享。我国智慧城市发展的一个瓶颈在于信息孤岛效应,各政府部门间不愿公开、分项数据,这就造成数据之间的割裂,无法产生数据的深度价值。关于这一问题,一些政府部门也有清醒的认识,开始寻求解决方案,这是受自身的需求驱动的。比如,一些政府部门原来不愿分享自己的数据,但现在开始寻求数据交换伙伴,因为他们逐渐意识到单一的数据是没法发挥最大效能的,部门之间相互交换数据已经成为一种发展趋势。同时,随着各方面的发展及政策的推进,很多以前不公开的数据也逐渐公开了,这对大数据的发展都是有力的支持。
物联网技术推进大数据发展
物联网对大数据的意义方面,赵英举了个例子来说明物联网技术对大数据的推进。去年北京7.21暴雨之后,政府采取了很多解决措施,很重要的一个体现是,北京市科委很快就立了专项基金去给受灾的房山和门头沟这两个区进行应急管理能力的提升以及信息化的建设。同方参与了门头沟的项目,帮助门头沟提升预警能力。同方对门头沟原来的应急平台进行了改造和提升。比如对水位的监测,在有些重点立交桥下安装水位计,水位到一定程度会发生预警,相关部门就可以据此采取一些措施,这就是物联网技术的应用。
物联网技术跟大数据什么关系?当水位计的点增多后,就会收集到更多的数据,这样更便于发现一些规律并发出预警,这是采用大数据的技术手段自然而然就能做的事情。在点位数少的情况下,数据量不够大,只能解决一部分问题。所以说,正因为有了物联网,大数据布的点越来越多,自然而然就要会去分析实时数据。数据的挖掘,原本是对于历史数据的挖掘,现在对于实时数据的挖掘也是一种趋势,说明物联网的技术在推进着大数据相关技术的发展。
大数据支撑智慧城市的发展
城市运行体征是通过数据进行量化表现出来的,但这些数据散乱在政府的各个部门中,同方的职责是收集各部门有关城市运行体征的数据,帮助城市管理者进行数据汇总、分析,最终对城市体征的量化形态即各类数据进行管理,供政府管理者使用。
政府部门做的每一个决策都需要长期的调研,调研的资料来源于政府部门运行、城市运行的长期积累。政府信息化的高速发展已使政府产生了几百TB的数据。但数据本身没有任何意义,只有经过一定的系统分析之后,才能发挥数据的价值。智慧城市的每一个细节都会产生庞大的数据,同时,智慧城市的运行基础也来源于对大数据的深度分析。
大数据的表面是一系列静态的数据堆砌,但其实质是对数据进行复杂的分析之后得出一系列规律的动态过程。政府部门本身没有去做这样的事,这就需要企业对其进行支撑,同方看到了大数据对城市运行的重要意义,选择政府作为突破口,是形势发展的要求,也是同方大数据的独特之处。值得说明的是,同方大数据不参与政府决策,只是为政府决策提供数据支持。用数据的直观形式展现业务之间的关系,用数据表现城市发展变化和趋势,分析总结出城市存在的问题,为政府部门的决策提供辅助。
城市运行体征的管理也需要大数据的推动。大数据在反映城市运行体征的时候,并不需要了解城市部门的主要业务及运作流程,单纯从数据的角度出发,通过计算机软件分析之后,数据就能得出一些规律,不关乎业务,不关乎结果,但能完全反映出数据之间的关联性。从大数据的角度出发,驱动城市运行体征发展,是一个可以在决策前段刨出人力的纯计算机运作模式,这样的好处是运作的量化和规范化。
对于大数据、物联网与智慧城市的发展,中国信息技术权威专家――国务院物联网领导小组组长、中国工程院邬贺铨院士曾有一个很深奥的表述:从物联网到大数据再到智慧城市,是“格物致知”的过程,通过分析决策达到“知行合一”.
智慧城市惠及每个人
大数据驱动下的智慧城市,关乎每个人的生活。最普遍的例子就是天气预报,以前的天气预报只会预测一下天气,但现今的天气预报会告诉公众更多的信息,如气象指数、空气污染指数、穿衣指数、驱车安全指数等,甚至是否有利于运动,对发型及妆容的影响都有说明。这是能让普通百姓切身体会的智慧生活,未来,教育、交通等关乎人们衣食住行的方方面面都会变得智慧起来。教育方面,我们可以看看美国的做法,美国每个大学都会将升学率、就业率、毕业生的年薪水平等如实展示,这对学生选择学校专业等是很有利的数据支持。交通方面,怎样畅通城市交通,怎样寻找停车位,选择哪种交通方式更便利安全等,都是智慧城市的未来状态。
当提到智慧城市的未来发展时,赵英表示:智慧城市来源于智慧决策,智慧决策来源于人的智慧。当每个人都很智慧的时候,一个城市也会变得智慧起来。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26