【每周一期-数据蒋堂】从SQL语法看离散性
所谓离散性,是指集合的成员可以游离在集合之外存在并参与运算,游离成员还可以再组成新的集合。从离散性的解释上可以知道,离散性是针对集合而言的一种能力,离开集合概念单独谈离散性就没有意义了。
离散性是个很简单的特性,几乎所有支持结构(对象)的高级语言都天然支持,比如我们用Java时都可以把数组成员取出来单独计算,也可以再次组成新的数组进行集合运算(不过Java几乎没有提供集合运算类库)。
但是SQL的离散性却很差。
SQL体系中有记录的概念,但并没有显式的记录数据类型。单条记录被SQL作为只有一条记录的临时表处理,也就是个单成员的集合。而且,SQL从表(集合)中取出记录时总是复制出一条新记录,和原表中的记录已经没有关系了,这个特性被称为immutable。immutable特性有助于保证代码的正确性和简单性,但也会丧失离散性。
缺失离散性会带来代码的繁琐和效率的低下。
比如要计算张三和李四的年龄差和工资差,SQL要写成两句:
SELECT (SELECT age FROM employee WHERE name='张三') - ( SELECT age FROM employee WHERE name='李四') FROM dual
SELECT (SELECT salary FROM employee WHERE name='张三') - ( SELECT salary FROM employee WHERE name='李四') FROM dual
这不仅书写麻烦,而且要重复查询。
如果支持较好的离散性,我们可以写成这样:
a = employee.select@1(name="张三")
b = employee.select@1(name="李四")
agediff=a.age-b.age
salarydiff=a.salary-b.salary
查询结果可以游离在集合外独立存在,并可以反复使用。
immutable特性会要求每次运算都复制数据,这在只读的运算中还只是浪费时间和空间影响效率,但如果要改写数据时,造成的麻烦就严重得多。
比如我们想对业绩在前10%销售员再给予5%的奖励。一个正常思路是先把业绩在前10%的销售员找出来,形成一个中间集合,然后再针对这个集合的成员执行奖励5%的动作。但由于SQL缺乏离散性,immutable特性导致满足条件的记录再形成的集合和原记录是无关的,在中间结果集上做修改没有意义。这样就迫使我们要把整个动作写成一个语句,直接在原表中找到满足条件的记录再加以修改,而前10%这种条件并不容易简单地在WHERE子句中写出来,这又会导致复杂的子查询。这还只是个简单例子,现实应用中比这复杂的条件比比皆是,用子查询也很难写出,经常采用的办法则是先把满足条件的记录的主键计算出来,再用这些主键到原表中遍历找到原记录去修改,代码繁琐且效率极为低下。
如果语言支持离散性,我们就可以执行上述思路了:
a=sales.sort@z(amount).to(sales.len()*0.1) //取出前业绩在10%的记录构成一个新集合
a.run(amount=amount*1.05) //针对集合成员执行奖励5%动作
从上面两个简单例子可以看出,缺失离散性会加剧分步计算的困难,immutable特性会降低性能并占用空间。当然,离散性的问题还不止于此。
不能用原集合的成员构成新集合再进行计算,SQL在做分组时无法保持分组子集,必须强迫聚合,作为集合化语言,SQL的集合化并不彻底。没有游离记录及其集合的表示方法,只能用传统的外键方案表示数据之间的关联关系,写出的代码即繁琐又难懂,而且运算性能还差,缺乏离散性的SQL无法采用直观的引用机制描述关联。特别地,没有离散性的支持,SQL很难描述有序计算,有序计算是离散性和集合化的典型结合产物,成员的次序在集合中才有意义,这要求集合化,有序计算时又要将每个成员与相邻成员区分开,会强调离散性。
这些具体内容我们会在后续文档中逐步详细说明。我们要从理论上改进SQL(或者更合适的说法是关系代数),主要工作就是在保持集合化的基础上引入离散性,从而解决上述问题,让新的语言能够同时拥有SQL和Java的优点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31