Top10 机器学习开源项目发布,历时一个月评出(附 GitHub 地址)
从将近 250 个机器学习开源项目中,综合各种条件进行打分排序,最终 Mybridge 团队评选出十大最新、最棒的机器学习开源项目。
这份 Top10 名单中包括对象检测、换脸、预测等等最热的 AI 明星、话题性研究和代码。它们在 GitHub 上的平均标星数量是 2500 多颗。希望这 10 大开源项目,对你有所帮助。
Rank 10
作者:Posenhuang 等(微软研究院)
GitHub:https://github.com/posenhuang/NPMT
★ Star:68
NPMT ,基于短语的神经机器翻译,这是一项来自微软研究院团队的研究。这个机器翻译领域的新突破,没有使用任何注意力机制。
这个方法通过 Sleep - WAke 网络( SWAN )明确地建模输出序列中的短语结构。SWAN 是一种基于分割的序列模型方法。
NPMT 的源代码基于 Torch 中的 fairseq 工具箱建立。fairseq 是 Facebook AI 研究院开源的序列到序列工具箱,这个方法使用卷积神经网络来做语言翻译,比循环神经网络提速 9 倍。
Rank 9
Deep-neuroevolution
作者:Uber AI 实验室
GitHub:https://github.com/uber-common/deep-neuroevolution
★ Star:392
这是共享出行巨头 Uber 开源的算法,他们此前集中发布了 5 篇论文,支持一种正在兴起的认识:通过用进化算法来优化神经网络的神经进化( neuroevolution )也是为强化学习( RL )训练深度神经网络的一种有效方法。
而这次 GitHub 中公布的代码,包括以下算法的分布式实现:
1、Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
论文地址:https://arxiv.org/abs/1712.06567
2、Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents
论文地址:https://arxiv.org/abs/1712.06560
这些代码基于 OpenAI 此前公布的源代码和论文。
Rank 8
Simple
作者:chrisstroemel
GitHub:https://github.com/chrisstroemel/Simple
★ Star:235
Simple 是贝叶斯优化的更具可扩展性的替代方法。像贝叶斯优化一样,它的样本效率很高,能用尽可能少的样本收敛到全局最优。
对于典型的优化工作负载,贝叶斯优化消耗的 CPU 时间以分钟计,而 Simple 使用的 CPU 时间以毫秒计。如下图所示:
Rank 7
作者:Henry Mao 等(加州大学圣迭戈分校)
GitHub:https://github.com/calclavia/DeepJ
★ Star:313
DeepJ 是一种端到端生成模型,能够以特定的混合风格来实时创作钢琴曲。这个算法能够生成可以调整参数的音乐,这种可调整的属性,能为艺术家、电影制作人、作曲家等带来实际的帮助。
使用这套代码需要 Python 3.5 。
访问下面的 Demo 地址,可玩、可感受,亦可当背景音听。
Demo 地址:https://deepj.ai/
Rank 6
作者:Charles Beattie 等(DeepMind)
GitHub:https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/psychlab
★ Star:4774
Psychlab ,DeepMind 为 AI 开设的心理学实验室。
其实就是个第一人称视角 3D 游戏世界,这个心理学实验室当然也是个模拟环境,研究对象是其中的深度强化学习智能体( Agents )。Psychlab 能够实现传统实验室中的经典心理学实验,让这些本来用来研究人类心理的实验,也可以用在 AI 智能体上。
Rank 5
作者:DeepMind
GitHub:https://github.com/deepmind/dm_control
★ Star:882
火遍全球的 AlphaGo 让我们知道了强化学习打游戏究竟有多厉害,这么强大的算法什么时候才能打破次元壁,走进现实、控制物理世界中的物体呢?
DeepMind 已经开始往这方面努力。他们此前发布的控制套件“ DeepMind Control Suite ”,就为设计和比较用来控制物理世界的强化学习算法开了个头。
Control Suite 设计了一组有着标准化结构、可解释奖励的连续控制任务,还为强化学习 Agent 提供一组性能测试指标。
Control Suite 中的任务可以分为 14 个领域,也就是 14 类物理模型,上排从左到右分别是:
体操机器人 Acrobot ,(两节钟摆)、杯中小球、倒立摆、猎豹形机器人、手指、鱼、单足跳跃机器人,下排从左到右分别是人形机器人、机械手、钟摆、质点、形似两节手臂的 Reacher 、游泳机器人、步行者。
Rank 4
作者:Marco Ribeiro 等(华盛顿大学)
GitHub:https://github.com/marcotcr/lime
★ Star:3148
在这次的 Top10 项目中,这个算是“老资格”了。主要基于 KDD2016 上发表的论文:《“为什么我应该相信你?”解释任何分类器的预测》。
这个研究提出了局部可理解的与模型无关的解释技术( Local Interpretable Model-Agnostic Explanations: LIME ),一种用于解释任何机器学习分类器的预测的技术,并在多种与信任相关的任务中评估了它的可用性。
下面这段视频,是一个更直观的解释。
Rank 3
Gradient-checkpointing
作者:OpenAI
GitHub:https://github.com/openai/gradient-checkpointing
★ Star:1107
GPU 内存太小可能是神经网络训练过程中最大的拦路虎。
不怕,用这个 OpenAI 推出的 gradient-checkpointing 工具程序包,对于前馈模型来说,仅仅需要增加 20% 的计算时间,就能让 GPU 处理十倍大的模型。
这个工具包的开发者是 OpenAI 的研究科学家 Tim Salimans 和前 Google Brain 工程师的数据科学家 Yaroslav Bulatov 。
这个工具包使用了“用亚线性的存储成本训练神经网络”的技术,为简单的前馈网络提供了等价的内存存储,同时能为一般的神经网络节省内存,比如多层架构。
Rank 2
作者:Hidde Jansen
GitHub:https://github.com/deepfakes/faceswap
★ Star:3629
最近 Deepfakes 在 AI 、AV 两届掀起轩然大波。简单的说,就是 AI 可以帮你给 AV 小片换脸,替换成任何你想看的明星。
而 FaceSwap 是一个基于 deepfakes 的非官方开源项目。
Rank 1
作者:Facebook AI 研究院
GitHub:https://github.com/facebookresearch/Detectron
★ Star:11248
这个应该是当之无愧的第一吧。
Detectron 是 Facebook 的物体检测平台,今年初宣布开源,它基于 Caffe2 ,用 Python 写成,这次开放的代码中就包含了 Mask R-CNN 的实现。
除此之外,Detectron 还包含了 ICCV 2017 最佳学生论文 RetinaNet ,Ross Girshick( RBG )此前的研究 Faster R-CNN 和 RPN 、Fast R-CNN 、以及 R-FCN 的实现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29