Google机器学习零基础在线课程发布,免费!附中文版
新的学习资源来了!刚刚,谷歌上线了人工智能学习网站 Learn with Google AI,并推出了机器学习在线课程,免费!而且还有中文版!
传送门:
“机器学习速成课程”中文版:
https://developers.google.com/machine-learning/crash-course/
Learn with Google AI:
https://ai.google/education
这个课程名为“机器学习速成课程” (简称MLCC) ,定位为机器学习热爱者的自学指南。
本来这是谷歌的内部课程,最初旨在帮助谷歌员工建立对人工智能和机器学习基本原理的快速认知,目前已有18,000名员工参加。
现在,谷歌终于允许这个课程“飞进寻常百姓家”。
课程总体时长大约15个小时,包含25节互动式课程、Google研究人员的讲座、40多项练习、实际案例研究等,还可以以互动方式直观呈现算法的实际运用。
为了展现课程全貌,我们将目录展示如下:
目录
简介
目标
前提条件和准备工作
机器学习概念
机器学习简介(3分钟)
框架处理(15 分钟)
深入了解机器学习(20 分钟)
降低损失(60 分钟)
使用 TF 的基本步骤(60 分钟)
泛化(15 分钟)
训练集和测试集(25 分钟)
验证(40 分钟)
表示法(65 分钟)
特征组合(70 分钟)
正则化:简单性(40 分钟)
逻辑回归(20 分钟)
分类(90 分钟)
正则化:稀疏性(45 分钟)
神经网络简介(55 分钟)
训练神经网络(40 分钟)
多类别神经网络(50 分钟)
嵌入(80 分钟)
机器学习工程
生产环境机器学习系统(3分钟)
静态训练与动态训练(7 分钟)
静态推理与动态推理(7 分钟)
数据依赖关系(14 分钟)
机器学习现实世界应用示例
癌症预测(5 分钟)
18 世纪文学(5 分钟)
现实世界应用准则(2 分钟)
总结
后续步骤
课程可以教会你什么?
官网显示,该课程将解答如下问题:
学习前的准备工作
看到这里,你是不是跃跃欲试、摩拳擦掌呢?别急,虽然谷歌表示,这门速成课程是为机器学习零基础的新手设计的,但是为了能够理解课程中介绍的概念并完成练习,需要参与者掌握入门级的代数知识;熟练掌握编程基础并具有一些使用Python进行编码的经验。
在准备工作中,课程还要求学习者对 Pandas 有所了解,因为机器学习速成课程中的编程练习使用 Pandas 库来操控数据集。
同时需要你了解低阶的 TensorFlow 基础知识,因为速成课程中的编程练习使用 TensorFlow 的高阶 tf.estimator API 来配置模型。
对于需要用到的主要概念和工具,谷歌也做了系统的罗列,很多概念都有超链接来进行解释,但可惜的是很多超链过去的网站都是英文,看来英文还是不能还给老师啊。
课程学习
准备工作完成后,就可以参照目录进行按部就班的学习了。
课程提供包括英语、西班牙语、法语、韩语和简体中文在内的多种版本,可以从网页左下角的下拉列表中选择语言。
值得一提的是,视频讲座的配音是使用机器学习技术生成的。营长在试听后发现,虽然机器的味道还很重,但并不影响理解,视频上方还有“发送反馈”的设置,点击后可以提交错误报告和建议,协助谷歌改进配音技术。
学习效果的检验
除了教学视频和文章,在每一小节结束后,课程都还附有检验学习效果的小题目。
比如在第一节框架处理的学习结束后的题目是这样的:
在你选择完成后,系统会告诉参与者为什么是对的,为什么是错的:
当然也有编程练习,比如:
谷歌为什么这么做?
半个月前,一年一度的 MIT 十大突破性技术评选揭晓,“AI 大众化”位列其中,评选机构认为其突破性在于基于云的 AI 技术使得 AI 更加便宜且易于使用。
自从公司战略从 Mobile first 转变为 AI first 以来,Google 就不遗余力地推行人工智能的大众化,其中就包括像 TensorFlow 以及更有趣的一些项目,比如 Doodles等,这些实验旨在以更实用的方式展示 AI。
尽管如此,很多公司依然缺乏足够多会使用 AI 的人才,“人工智能人才缺口数百万”这样的报道也屡屡被朋友圈刷屏,所以谷歌正试图让更多的人能够通过 Learn with Google AI 来一起了解这个领域,并将人工智能和机器学习的人才汇聚起来,供他们了解机器学习核心概念、开发技巧以及应用其解决一些实际问题。
机器学习速成课程 (简称MLCC) 是谷歌的第一个课程计划,相信日后谷歌会上线更多的课程和资源。
祝大家学习愉快!
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28