不关注人性的大数据,只是大忽悠_数据分析师
斯大林曾说:一个人的死是悲剧,一百万个人的死就是数据。如果拿医学界的术语,这是一种共情疲劳,如果换成时下最流行的术语,就是我们还无法处理大数据。
上周参加腾讯思享会,主题就是“大数据将如何影响社会变革”。场间针对大数据,提出了不同的声音,有“数据孤岛论”:现有的大数据是断裂而封闭的,比如腾讯说自己有某方面的全数据,但是否有百度,有阿里的?有“数据阴谋论”:现在在用大数据做事的就是大企业和政府机构,如果我们普通人不能掌握,那就是被一个无形的网所束缚、所监控。有从经济安全角度来看待大数据处理“黑箱”问题时的作用。也有从实践角度来谈论大数据在商界中的应用。但最触动我的是下面两个观点。这里简单摘编下以飧读者。
不关注人性的大数据是大忽悠---刘德寰
现在主流对大数据的理解是基于维克托的《大数据时代》进行二次改良。但这其中有两个十分值得商榷的观点,一是对抽样的极端蔑视,二是无原则的推崇相关。大数据是一种抛弃随机分析法(抽样调查)而对所有数据进行处理,那么这其中就存在一个由斯坦福Trevor Hastie提出的问题,如何在稻草里找一根针,前提是很多稻草长得和针一样。这是我们所有大数据研究面临的最大风险,数据太大之后带来的实际上是一个规律的丧失和失真,千万不要忽视了抽样。
抛开这两个观点,更为可怕的是现在的大数据鲜有关注人性。先举个生活中大家都遇到过的问题,一个人去网上买了5升的洗衣液,整个流程花费了不到1分钟。第二天浏览网页,他发现旁边的广告就是各种各样的洗衣液。这是什么?基于大数据的精准营销? 这恐怕是基于大忽悠的精准骚扰吧。 有点常识的人都知道,5升的洗衣液就算家里人再多也要用一个月,而且那个人流程这么短,肯定就是品牌忠诚者,推广的应该是什么时候那个品牌的洗衣液会打折之类的,这才是大数据。人类早期研究问题的方法就是靠体会、知觉、体验、内省等,这些看起来跟大数据无关的东西可能恰恰是大数据的核心,因为它是思想。
谷歌2008年弄了一个非常厉害的东西叫流感趋势预测,它预测的结果比美国疾病控制中心还准,当时轰动了全球。结果后来里面东西越来越乱,严重的高估了流感的状态。为什么?这就是刚刚说的维克多流派谈大数据的时候重相关不重因果。流感跟发病的时间点,跟美国比如中学生篮球赛那个时间点是完全一致的,这俩概念能有关系吗?问题是只要搜索中学生的篮球赛,就构成了流感预测的一个主要的词之一。类似的东西太多了,为什么?因为在谷歌预测的时候,没有找疾控公共卫生的专家,这些东西才是进行大数据预测的一个很重要的前提。
基因工程才是真正的大数据
人有多少细胞?量级为10的14次方。 其中一个细胞癌变就能导致你生命的完结。难道这不是大数据?真正的大数据是生命大数据,基因筛查可以消灭先天性疾病和预防癌症,人类想在千年之后复活亦不是难事。可是这样的基因科技发展却遭遇了无数现实瓶颈和伦理挑战。
问题1:从文明和宗教角度,基因工程造就的“完美人”是另一个物种,这样的“完美人”还是人类么?
问题2:基因问题与大数据问题其最大伤害是对人格独立性与隐私性的剧烈破坏。
文章来自:CDA数据分析师官网
针对这两个问题,华大基因研究院汪建院长给出他的解读:
你不做,欧洲人在做,美国人在做,用一种最悲观的说法,与其让白人把我们搞死不如我们自己把自己搞死。1993年我在西雅图的时候,老布什时代启动人类基因组计划,那个时候讨论地非常激烈。基因科学会对现行的人类道德、法律、生活生产医疗方式带来天翻地覆的变化,这可能很难以人的意志来改变,在这个时间维度上有点儿太快了,我们自己也感觉太快。当时我在科学院的时候就是因为这些事情争论不休,所以,我们才离开。离开以后,结果更快了,从几十个人几年时间变成几千人,明年可能就上万了,明年纯基础研究机构有上万人,可能对国家现在有关的科研机构的破坏性和挑战性就很大,产业的发展也会很大。但是它在某些程度上又顺应着民众的需求。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20