看透了!这才是真正的量化投资
量化投资在中国的发展时间不长,很多机构和投资者都还对量化投资非常陌生,而那时又恰逢2016、2017年的震荡市,量化对冲产品的业绩表现不是很好,使得本来对于量化投资有质疑的投资者有了更深的误解。
就像当时人们对互联网的态度一样,将其视为洪水猛兽,颠覆很多行业。可现在回过头来看看,互联网不仅没有所谓的“颠覆”行业,反而给社会提供了众多便利。所以切勿妖魔化量化投资,你所看到的量化投资不一定就是你以为的量化投资。
什么是真正的量化投资?
简单的说,量化投资就是通过对所有能公开获得的数据进行数量化分析而获得对投资标的未来价格走势进行预测的一种投资方法。但如果你认为量化投资仅仅是用数理模型来进行选股的话,那你就大错特错了!
比如大类资产配置、保险产品定价、商品期货、股指期货、国债期货、外汇、期权、可转债、信用债、利率债等等,甚至包括比特币,都是量化投资的运用范围。而量化投资的目的不是别的,而是实现超越市场平均水平(β)的超额收益(α)。在有超额收益能力的基础上,量化对冲类产品可以获得相对收益α,而量化多头类产品可以获得绝对收益β+α。
(详见:《5分钟读懂高大上的量化投资》)
择时和选股是量化投资超额收益的主要来源
在股票市场,量化投资超额收益的主要来源分为选股与择时:
选股,就是在市场的所有股票中选出能在某段时间获得高出市场平均收益的股票。择时,又包括Beta择时和风格择时。Beta 择时就是判断市场的整体走势,抓住上涨的股而规避下跌的股。风格择时就是抓住市场近期的风格取向,提高配置来获得超额收益。
明汯投资总监裘博士认为,以中国市场为例,如果能在2009年到2016年11月配置最小市值的股票,从2016年11月开始配置大盘蓝筹,即使不用精选个股,也能获得非常高的收益。
量化和对冲不是一码事
此前的对冲工具少,只有沪深300股指和中证500股指,而这两者对应的是股票市场上市值最大的800只股票,所以只要不把选股标的限制在大市值股票内,基本上都能赚一部分做多小市值股票做空大市值股票对应的股指期货的钱。但把这种收益称之为绝对收益是不科学的,因为一方面是个股本身超越大盘指数的收益,另一方面是赚了不完全对冲市值规模风险的钱(即通过对市场规模风险的暴露去赚钱)。而市场的风险其实除了包括市值规模的风险,也包括行业和风格的风险。真正的中性策略是即包括市值的中性,也包括行业和风格的中性。
量化投资在中国市场的水土不服
由于2016,2017年的震荡市,很多人开始质疑量化投资是否能在国内行得通。明汯投资总监裘博士认为主要是基于两点:
1、对冲成本高昂。除了股票市场的波动外,股指的贴水也是量化收益的一大杀手。明汯投资总监裘博士表示,股指的大幅贴水在2015年9月到2017年6月这段时间内很大程度影响了市场中性产品的业绩,这部分主要是对冲成本的高昂抵消了量化选股模型的大部分超额收益,这个是市场环境的外在客观原因。
简单说,股指的贴水就是期货价格比现货价格要低,但如果是对冲的话,则需要卖出期货。也就是说,你在对冲时卖出了低价的期货,而买入了高价的现货,因此则会大大影响量化策略的超额收益。比如基差(现货价格-期货价格)为5%,那么就意味着对冲策略要白白损失5%的收益。
2、2017年股票市场分化明显。有数据显示,代表大盘蓝筹的沪深300指数上涨21.78%,中证500指数下跌0.2%,代表小市值股票的中证1000指数下跌17.35%。因此如果你做空沪深300或者中证500的话,将面临着巨大的损失。再加上量化投资在国内的水土不服,可以说2017年的市场环境是考量量化机构选股投研实力的一个很好的标准。优秀的量化对冲私募在2017、2018年都会有不俗的表现。
某量化私募旗下的多策略旗舰基金,采用量化选股+股指期货对冲策略,并以CTA策略作为辅助,表现如下。
某量化私募旗下中性策略旗舰基金,采用量化选股+股指期货对冲策略,并以股票日内策略为辅助,表现如下。
量化私募缺乏长期的历史经验
由于国内有股指期货的时间比较短,自2012年起基本上算国内量化投资的元年,国内量化私募普遍成立时间较短,公开业绩不够长,市场对量化投资的认识和普及也不够。类似于明汯投资总监裘博士这样在国内外自营、私募机构有过基金经理从业经历、投资经验超过17年之久的基金经理更是少之又少。
投资是个长期的过程,从短期业绩上来说,在任何时候都有比巴菲特业绩好的基金经理,因此量化私募人应该更注重长期业绩,积累足够长的投资记录,才会得到机构和个人投资者的认可
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31