C++里函数可以设置缺省参数,Java不可以,只能通过重载的方式来实现,python里也可以设置默认参数,最大的好处就是降低函数难度,函数的定义只有一个,并且python是动态语言,在同一名称空间里不能有想多名称的函数,如果出现了,那么后出现的会覆盖前面的函数。
def power(x, n=2):
s = 1
while n > 0:
n = n - 1
s = s * x
return s
看看结果:
>>> power(5)
25
>>> power(5,3)
125
注意: 必选参数在前,默认参数在后,否则Python的解释器会报错。
建议:*当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。
默认参数也有坑,看看下面的代码,先定义一个list,添加一个end再返回:
def add_end(L=[]):
L.append('END')
return L
看看调用结果:
>>> add_end([1, 2, 3])
[1, 2, 3, 'END']
>>> add_end(['x', 'y', 'z'])
['x', 'y', 'z', 'END']
>>> add_end()
['END']
>>> add_end()
['END', 'END']
>>> add_end()
['END', 'END', 'END']
这里需要解释一下,Python函数在定义的时候,默认参数L的值就被计算出来了,即[]。此时L指向[]。所以如果L中的内容改变了,下次调用引用的内容也就不再是[]了。所以要牢记一点定义默认参数必须指向不可变对象!。
可变参数
第一种方法,传入的参数为一个list或者tuple。
def calc(numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum
调用方式:
>>> calc([1, 2, 3])
14
>>> calc((1, 3, 5, 7))
84
第二种方式,直接传入多个参数,函数内部会自动用一个tuple接收。
def calc(*numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum
调用方式:
>>> calc(1, 2)
5
>>> calc()
0
这个时候如果还想把一个list或者tuple里的数据传进去,可以这样:
>>> nums = [1, 2, 3]
>>> calc(*nums)
14
关键字参数
关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。
def person(name, age, **kw):
print 'name:', name, 'age:', age, 'other:', kw
调用示例:
>>> person('Michael', 30)
name: Michael age: 30 other: {}
>>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}
参数组合
在Python中定义函数,可以用必选参数、默认参数、可变参数和关键字参数,这4种参数都可以一起使用,或者只用其中某些,但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数和关键字参数。
递归函数
基本的也没什么可讲的,和Java/C++里一样,就是调用本身的一种。这里重点介绍一下尾递归优化。事实上尾递归和循环效果是一样的,很显然的一个优点那就是可以防止递归调用栈溢出。
定义:在函数返回的时候调用自身,并且,return语句不能包含表达式。编译器或者解释器可以对其做优化,无论调用多少次,只占用一个栈帧,不会出现溢出的情况。
举个简单的例子,以阶乘函数为例:
def fact(n):
if n==1:
return 1
return n * fact(n - 1)
如果传入的n很大,就可能会溢出,这是由于return n * fact(n - 1)引入了乘法表达式,就不是尾递归了。把代码改一下:
def fact(n):
return fact_iter(n, 1)
def fact_iter(num, product):
if num == 1:
return product
return fact_iter(num - 1, num * product)
默认参数陷阱
Python的函数定义提供了默认参数这个选择,使得函数的定义和使用更加的灵活,但是也会带来一些坑,例如之前的一个例子:
函数定义:
def add_end(L=[]):
L.append('END')
return L
调用函数的结果:
>>> add_end([1, 2, 3])
[1, 2, 3, 'END']
>>> add_end(['x', 'y', 'z'])
['x', 'y', 'z', 'END']
>>> add_end()
['END']
>>> add_end()
['END', 'END']
>>> add_end()
['END', 'END', 'END']
很明显这个与函数的定义初衷不符,用一句话解释就是:
Default values are computed once, then re-used.
为了深入研究这个问题,我们来看看另一个例子:
# coding=utf-8
def a():
print "a executed"
return []
def b(x=a()):
print "id(x):", id(x)
x.append(5)
print "x:", x
for i in range(2):
print "不带参数调用,使用默认参数"
b()
print b.__defaults__
print "id(b.__defaults__[0]):", id(b.__defaults__[0])
for i in range(2):
print "带参数调用,传入一个list"
b(list())
print b.__defaults__
print "id(b.__defaults__[0]):", id(b.__defaults__[0])
NOTE:稍微解释一下,所有默认值都存储在函数对象的__defaults__属性中,这是一个列表,每一个元素均为一个默认参数值。
来看看输出结果:
a executed
不带参数调用,使用默认参数
id(x): 140038854650552
x: [5]
([5],)
id(b.__defaults__[0]): 140038854650552
不带参数调用,使用默认参数
id(x): 140038854650552
x: [5, 5]
([5, 5],)
id(b.__defaults__[0]): 140038854650552
带参数调用,传入一个list
id(x): 140038854732400
x: [5]
([5, 5],)
id(b.__defaults__[0]): 140038854650552
带参数调用,传入一个list
id(x): 140038854732472
x: [5]
([5, 5],)
id(b.__defaults__[0]): 140038854650552
简单分析一下输出结果:
第1行
在定义函数b(),即执行def语句,代码第7行def b(x=a()):的时候,这句话使用了默认参数,所以在定义的时候会计算默认参数x的值,这个时候会调用a(),所以打印出了a executed。
第2~6行
第一次执行循环,代码第14行调用b()没有传递参数,使用默认参数,此时x=[],所以调用一次之后
print b.__defaults__
输出结果为
复制代码 代码如下:
([5],)
第7~11行
第二次循环,代码第14行调用b()没有传递参数,使用默认参数。
注意:默认参数只会计算一次,也就是说那个内存区域就固定了,但是这个地址所指向的是一个list,内容可以改变,此时由于上一次调用x: [5],所以
print b.__defaults__
输出结果为
([5, 5],)
第12~16行
第二个循环语句,第一次循环,代码第20行传入一个空的list,所以不使用默认参数,此时x=[],所以
print b.__defaults__
输出结果为
复制代码 代码如下:
([5],)
第18~21行
第二个循环语句,第二次循环,代码第20行传入一个空的list,所以也不使用默认参数,此时仍然是x=[],所以
print b.__defaults__
输出结果依然为
复制代码 代码如下:
([5],)
函数也是对象,因此定义的时候就被执行,默认参数是函数的属性,它的值可能会随着函数被调用而改变。其他对象不都是如此吗?
牢记: 默认参数必须指向不变对象!代码改一下如下:
# coding=utf-8
def a():
print "a executed"
return None
def b(x=a()):
print "id(x):", id(x)
if x is None:
x = []
x.append(5)
print "x:", x
for i in range(2):
print "不带参数调用,使用默认参数"
b()
print b.__defaults__
print "id(b.__defaults__[0]):", id(b.__defaults__[0])
for i in range(2):
print "带参数调用,传入一个list"
b(list())
print b.__defaults__
print "id(b.__defaults__[0]):", id(b.__defaults__[0])
此时的输出结果看看是什么:
a executed
不带参数调用,使用默认参数
id(x): 9568656
x: [5]
(None,)
id(b.__defaults__[0]): 9568656
不带参数调用,使用默认参数
id(x): 9568656
x: [5]
(None,)
id(b.__defaults__[0]): 9568656
带参数调用,传入一个list
id(x): 140725126699632
x: [5]
(None,)
id(b.__defaults__[0]): 9568656
带参数调用,传入一个list
id(x): 140725126699704
x: [5]
(None,)
id(b.__defaults__[0]): 9568656
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31