【导语】:今天我们来聊聊粽子,Python分析部分请看第三部分。
又到一年端午节,作为中华民族的传统节日,传说粽子是为祭奠投江的屈原而传承下来的,如今吃粽子也成了端午的主要习俗之一。除了商场出售的琳琅满目的粽子,各家各户的妈妈和奶奶们也纷纷浸糯米、洗粽叶、包粽子。
粽子的包法和形状也很有讲究,除了常见的三角粽、四角粽,还长粽、塔型粽和牛角粽等等。
说到粽子的口味就更多了。粽子几乎每年都会引发咸甜之争,有句话说的是——吃货不分南北,口味必分甜咸。
北方人吃粽子偏爱甜口,多以红枣、豆沙做馅,少数也采用果脯为馅,蘸白糖或红糖食用;
而南方青睐咸口,口味有咸肉粽、咸蛋黄粽、板栗肉粽、腊肉香肠粽、火腿粽、虾仁粽等等。
那么哪家的粽子买得最好?大家都普遍喜欢什么口味?今天我们就用数据来盘一盘端午的粽子。
本文要点:
粽子甜咸之争,自己包粽子选什么料?
吃货的力量,全网粽子谁家卖的最好?
01粽子“甜咸之争”
自己包粽子选什么料?
自己家包的粽子,永远是最好吃的,相比起来外面卖的粽子都不香了。对厨艺有自信的小伙伴们大可以自己试着包包看。
那么自己包粽子,选甜口还是咸口?馅料配红豆还是五花肉?
首先我们获取了,美食天下网站关于粽子的菜谱,共460条。看看哪些菜谱最受欢迎吧。
1甜粽还是咸粽?
在甜咸之争中,这次甜粽胜出了。
有33.04%的菜谱都是甜粽,其次22.17%才是咸粽。同时也有许多小伙伴选择最简单的纯糯米粽,原味,这部分占比17.83%。
2食材选什么
食材方面我们看到:
无论如何糯米和粽叶都是必不可少的。
然后在咸粽方面,五花肉很多人的首选,其次咸蛋黄、香菇、排骨、腊肠等都是常见的选择;在甜粽方面呢,红豆蜜枣是很多人的首选。其次绿豆、豆沙、花生米、西米等也不错。
3调料放什么
调料方面可以看到:
糖和酱油是少不了的。还花生油、蚝油等选择。除了这些常规操作,也还有选择抹茶粉这种创新的做法。
02吃货的力量
全网粽子谁家卖的最好?
出于自己不会包粽子、图方便、过节送人等考虑,直接在网上买粽子的人也不少。那么哪些店铺的粽子最受大众欢迎呢?我们分析获取了淘宝售卖粽子商品数据,共4403条。
粽子店铺销量TOP10
1首先在店铺方面:
五芳斋是妥妥的霸主,粽子销量位居第一。其次真真老老位居第二。
2粽子店铺地区排行TOP10
这些店铺都来自哪里?谁是真正的粽子大省呢?
经过分析发现,浙江一骑绝尘,粽子店铺数量远远领先其他省份。浙江的粽子店铺占到全网的67.71%。毫无争议的大佬。
其次广东、上海、北京分部位于第二、三、四名。
3 粽子都卖多少钱?
粽子都卖多少钱也是消费者们最关系的了,淘宝店铺买的粽子一般一份有10个左右。分析发现,价格在一份50元以内的还是占到绝多数,全网有55.22%的粽子都在50元内。其次是50-100元的,占比24.81%。
4不同价格粽子销量
那么销售额方面又如何呢,什么价格的粽子卖的最好?
可以看到50-100元的粽子销售额最高,占比53.61%。其次是50元以内的,占比22.06%。毕竟从送礼品的角度,还是要一定价格考量的,太平价的不行,需要一定的档次。
5粽子标题词云
最后,我们再看到粽子的商品标题:
整理发现,除了"粽子"、"端午"等关键词,"嘉兴"被提到的最多。看来嘉兴的粽子是真的很有名呀。
粽子馅料方面,"蛋黄"、"鲜肉"、"豆沙"都是非常热门的。同时"礼盒包装"、"送礼"、"五芳斋"等也被多次提到。
03用Python教你
爬取淘宝粽子数据
我们使用Python获取了淘宝网粽子商品销售数据和美食天下菜谱数据,进行了一下数据分析。此处展示淘宝商品分析部分代码。按照数据读入-数据处理和数据可视化流程,首先导入我们使用的Python库,其中pandas用于数据处理,jieba用于分词,pyecharts用于可视化。
# 导入包 import pandas as pd import time import jieba from pyecharts.charts import Bar, Line, Pie, Map, Page from pyecharts import options as opts from pyecharts.globals import SymbolType, WarningType WarningType.ShowWarning = False
1数据导入
# 读入数据
df_tb = pd.read_excel('../data/淘宝商城粽子数据6.23.xlsx')
df_tb.head()
查看一下数据集大小,可以看到一共有4403条数据。
df_tb.info()
RangeIndex: 4403 entries, 0 to 4402
Data columns (total 5 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 goods_name 4403 non-null object
1 shop_name 4403 non-null object
2 price 4403 non-null float64
3 purchase_num 4403 non-null object
4 location 4403 non-null object
dtypes: float64(1), object(4)
memory usage: 172.1+ KB
2数据预处理
我们对数据集进行以下处理,以便我们后续的可视化分析工作,经过处理之后的数据共4192条。
去除重复值
goods_name:暂不处理
shop_name:暂不处理
price:暂不处理
purchase_num:提取人数,注意单位万的处理
计算销售额 = price * purchase_num
location:提取省份
# 去除重复值 df_tb.drop_duplicates(inplace=True) # 删除购买人数为空的记录 df_tb = df_tb[df_tb['purchase_num'].str.contains('人付款')] # 重置索引 df_tb = df_tb.reset_index(drop=True) # 提取数值 df_tb['num'] = df_tb['purchase_num'].str.extract('(\d+)').astype('int') # 提取单位 df_tb['unit'] = df_tb.purchase_num.str.extract(r'(万)') df_tb['unit'] = df_tb.unit.replace('万', 10000).replace(np.nan, 1) # 重新计算销量 df_tb['true_purchase'] = df_tb['num'] * df_tb['unit'] # 删除列 df_tb = df_tb.drop(['purchase_num', 'num', 'unit'], axis=1) # 计算销售额 df_tb['sales_volume'] = df_tb['price'] * df_tb['true_purchase'] # 提取省份 df_tb['province'] = df_tb['location'].str.split(' ').str[0] df_tb.head()
数据可视化部分主要对以下的数据进行汇总分析,分析维度如下:
粽子店铺商品销量排行
各省份粽子店铺数量排行
各省份粽子销量分布
粽子都卖多少钱?
不同价格区间的销售额分布?
粽子的食材
商品标题词云图
粽子店铺商品销量排行Top10
shop_top10 = df_tb.groupby('shop_name')['true_purchase'].sum().sort_values(ascending=False).head(10) # 条形图 bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar1.add_xaxis(shop_top10.index.tolist()) bar1.add_yaxis('', shop_top10.values.tolist()) bar1.set_global_opts(title_opts=opts.TitleOpts(title='粽子店铺商品销量排行Top10'), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)), visualmap_opts=opts.VisualMapOpts(max_=1350657.0) ) bar1.render()
各省份粽子店铺数量排行Top10
province_top10 = df_tb.province.value_counts()[:10] # 条形图 bar2 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar2.add_xaxis(province_top10.index.tolist()) bar2.add_yaxis('', province_top10.values.tolist()) bar2.set_global_opts(title_opts=opts.TitleOpts(title='各省份粽子店铺数量排行Top10'), visualmap_opts=opts.VisualMapOpts(max_=1000) ) bar2.render()
浙江vs其他省份店铺粽子销量对比
names = ['浙江', '其他省份'] numbers = [3378601.0. 1611409.0] data_pair = [list(z) for z in zip(names, numbers)] # 绘制饼图 pie1 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px')) pie1.add('', data_pair, radius=['35%', '60%']) pie1.set_global_opts(title_opts=opts.TitleOpts(title='浙江vs其他省份店铺粽子销量对比'), legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%')) pie1.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%")) pie1.set_colors(['#EF9050', '#3B7BA9']) pie1.render()
全国店铺粽子销量分布
province_num = df_tb.groupby('province')['true_purchase'].sum().sort_values(ascending=False) # 地图 map1 = Map(init_opts=opts.InitOpts(width='1350px', height='750px')) map1.add("", [list(z) for z in zip(province_num.index.tolist(), province_num.values.tolist())], maptype='china' ) map1.set_global_opts(title_opts=opts.TitleOpts(title='全国店铺粽子销量分布'), visualmap_opts=opts.VisualMapOpts(max_=300000), ) map1.render()
粽子都卖多少钱?
# 分箱 bins = [0.50.100.150.200.500.1000.9999] labels = ['0-50元', '50-100元', '100-150元', '150-200元', '200-500元', '500-1000元', '1000-9999元'] df_tb['price_cut'] = pd.cut(df_tb.price, bins=bins, labels=labels, include_lowest=True) price_num = df_tb['price_cut'].value_counts() # 数据对 data_pair2 = [list(z) for z in zip(price_num.index.tolist(), price_num.values.tolist())] # 绘制饼图 pie2 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px')) pie2.add('', data_pair2. radius=['35%', '60%'], rosetype='radius') pie2.set_global_opts(title_opts=opts.TitleOpts(title='粽子都卖多少钱?'), legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%')) pie2.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%")) pie2.set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF']) pie2.render()
不同价格区间的销售额
# 添加列 cut_purchase = round(df_tb.groupby('price_cut')['sales_volume'].sum()) # 数据对 data_pair = [list(z) for z in zip(cut_purchase.index.tolist(), cut_purchase.values.tolist())] # 绘制饼图 pie3 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px')) pie3.add('', data_pair, radius=['35%', '60%']) pie3.set_global_opts(title_opts=opts.TitleOpts(title='不同价格区间的销售额表现'), legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%')) pie3.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%")) pie3.set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF', '#7FFFAA']) pie3.render()
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16