大数据所能做到的三大错误假设_数据分析师
大数据似乎已经火到不行了。根据《华尔街日报》最近的一篇报道:缺乏经验的数据科学家每年却指挥着价值高达30万美元的大数据项目。显然,我们已然大步迈进了大数据时代。
然而,鉴于这一领域的相关工具和一系列实践方案都是如此的新颖,对于当下的我们来说,重新审视我们关于大数据所能够帮助我们解决的相关问题的假设是至关重要的,或许更重要的是帮助我们捋清那些事情是大数据所无法做到的。本文中,我将为大家总结企业对于大数据所能够帮助企业业务解决的三大最为普遍的错误假设。
大数据不能预测未来
大数据以及与之相关的一系列分析工具,评论,科学实验和可视化并不能告诉你将来会发生什么事。为什么呢?因为您企业所收集的数据完全来自过去。我们尚不具备能够从未来收集数据和价值的能力。
我们可以基于这些数据,分析过去发生了什么状况,试着总结出企业的相关决策和业务行与最终结果之间的联系和趋势,然后可以使用猜测的方法,在相似的情况下,如果做出某个类似的决定,预估将发生的类似的结果。但我们并不能预测未来。
许多管理人员和企业妄图通过收集了大量数据来预测未来。这显然是一个坏主意,因为未来总是在变化。正如我们的理财顾问所始终强调的那样:“过去的表现并不能保证未来的结果。”这句格言同样适用于大数据。
并非试图预测未来,我们使用大数据来优化和改善当下的现实状况。分析现在所发生的事情、以便能够基于目前的事件建设性的改善后果。利用这些数据来发现如何提出恰当的问题。不要尝试将大数据作为一个预知未来的水晶球。
大数据不能代替您或您企业的价值
大数据可能会能够帮助您更容易和更清晰的看清和梳理各种不同决策选择的优势和缺点,但数据本身并不能帮助你如何解释为什么您或您的企业要进行某些决策。
数据可以勾勒出各种各样的趋势图,既可以通过数据本身,也可以通过可视化软件的辅助。你的员工可以针对任何给定的问题创建许多预计的情况,但这些研究结果只能说是一种投影。作为企业的CIO,其工作就是要协调各种IT资源和人员来为企业的业务部门的需求服务,而这实际上是与数据对于企业的价值意义相调和的。
例如,假设你的企业是一家汽车制造商。你的大数据源和工具告诉你某些车辆模型有缺陷,而修复尚待制造的车辆需要花费几美分的成本,但如果是对已经售出被顾客购买的车辆以及已经在生产过程中的车辆进行修理,其成本费用就会大大增加。因此,数据科学家会建议只解决目前仍在汽车生产装配线上的车辆,而不去理会那些已经售出的,因为数据可能显示,这样的成本会超过了可能造成的全面赔偿的成本。
(注意,如果你一直关注通用汽车点火开关的新闻故事背景的话,您对于此情况可能有所耳闻,觉得听起来很熟悉。然而,这里仅仅是一个假设的例子,而我们要进一步强调,没有证据表明大数据在通用汽车召回事件中起了作用。)
因为您的公司有产品质量是工作的第一首位,安全是最重要的这样的价值声明。虽然数据信息表明,产品召回是不值的,但是您企业仍然打电话给客户,执行了启动召回的流程。您企业这样做无疑是明智的,但这并不是受大数据控制的。
因此要务必记住,有时正确的答案似乎是错误的,因此,这就表明我们看问题的角度是很重要的。请务必确保你选择了正确的看问题的角度。
大数据不能解决非量化的问题
俗话说:当你仅有的一把工具是锤子时,所有的东西看起来都像是钉子。一旦你开始使用大数据来预测和解决业务问题方面取得了一些成功,不可避免地会有一种诱惑:每当您的业务或项目决策遇到问题,就会“寻求大数据”。
如前所述,数据可以给你呈现更多更好的选择,也许,其能够帮助您明确每项选择可能会导致发生什么。虽然,有时候通过数据分析所提供的选择并不是最好的,而这时,就是要让个人发挥作用的时候了。
为什么呢?因为个人的行为几乎是不可能量化的。每个人都有自己的一套特殊情况,自己的小宇宙,自身的原因和背景。因此将某个数学应用到一个单一的个体是不可能的。相反,我们必须考察一组个体,通过这样的学科来研究具有相似特征的人群。只有这样才能观察到适用于整个集团的行为的发展趋势。
这实际上不是一个大数据的问题。而是一个统计方面的问题。我能够想到的最简单的例子是信用评分,其是通过打破消费者的分组,并分析个人的还款,借款历史各组数据进行汇总的。
比如说,如果某人的信用评分是720分,这一分数实际上的意思是,由他过去的还款记录所形成的一组统计数据(具体取决于特定的信用评分等标准)。
信用评分不作任何声明有关个人。他或她可能从未违约,也可能进行严重的犯罪,所以,没有我们通过统计数据预测未来的行为。
信用分数不能预测一个人的行为。一个信用评分805的借款人可能准备违约也可能不借一分钱了,而评分只有590的借款人可能是一名财务状况良好的医生,并没有其他有争议的债务账单。这种现象就是为什么一些金融机构不会基于有风险的贷款进行定价的原因了。
人类的行为是无法预测的。不要以为数据可以预测他们的行为的错误。大数据和人是一种不稳定的组合。文章来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28