作者:Jared P. Lander
来源:大数据DT(ID:hzdashuju)
编自:《R语言:实用数据分析和可视化技术》(原书第2版)
读取CSV文件最好的方法是使用read.table函数,许多人喜欢使用read.csv函数,该函数其实是封装的read.table函数,同时设置read.table函数的sep参数为逗号(",")。read.table函数返回的结果为data.frame。
read.table函数的第一个参数为文件所在路径,可以是本地文件,也可以是网页上的文件。本书主要是从网页读取文件。
任意CSV文件都可以读取,这里使用read.table函数读取一个简单的文件(地址如下):
http://www.jaredlander.com/data/TomatoFirst.csv
> theUrl <-"http://www.jaredlander.com/data/TomatoFirst.csv" > tomato <-read.table(file=theUrl, header=TRUE, sep=",")
利用head命令,我们可以看到下面的结果。
> head(tomato)
如前面所述,第一个参数是文件名(或字符型变量)。注意我们如何显式地使用参数名file、head和sep。函数的参数能够按位置顺序赋值,而不用显式指定参数名,但指定参数名是最佳实践。
第二个参数header,表示数据的第一行,即列名。第三个参数sed,表示数据的分隔符。可以设为“\t”(tab分隔符)或者“;”(分号分隔符),以读取不同类型的文件。
常用但不被熟知的参数是stringAsFactors。将该参数设为FALSE(默认是TRUE)可使字符所在列不被转换成factor列。这样既节省计算时间(当大数据集包含许多字符列,也意味着有许多唯一值),又能保留列为字符。
stringAsFactors参数也可以用在data.frame中。再次创建“Sport”列。
> x <- 10:1 > y <- -4:5 > q <- c("Hockey", "Football", "Baseball", "Curling", "Rugby", + "Lacrosse", "Basketball", "Tennis", "Cricket", "Soccer") > theDF <-data.frame(First=x, Second=y, Sport=q, stringsAsFac=FALSE) > theDF$Sport
read.table函数还有许多参数,最常用的是quote和colClasses参数,分别设置字符的包围符和每列的数据类型。
类似read.csv函数,也有其他用于read.table的封装函数,也有默认参数。它们主要的区别是sep和dec参数。详细情况见表6-1。
▲表6-1 读取大文本文件的函数及其默认参数
大文件使用read.table函数读取到内存比较慢,幸运的是有解决方案。读取大CSV文件和其他文本文件的两个主流的函数是read_delim和fread,前者在readr包中由Hadley Wickham实现,后者在data.table包中由Matt Dowle实现。read_delim和fread运行相当快,因为两者都不把字符数据自动转换成factor。
01、 read_delim函数
readr包提供读取文本文件的一系列函数。最常用的是read_delim函数,读取有分隔符的文件,比如CSV文件。该函数的第一个参数是读取的文件路径或者URL。col_names默认为TRUE,指定文件的第一行为列名。
> library(readr) > theUrl <- "http://www.jaredlander.com/data/TomatoFirst.csv" > tomato2 <- read_delim(file=theUrl, delim=',') Parsed with column specification: cols( Round = col_integer(), Tomato = col_character(), Price = col_double(), Source = col_character(), Sweet = col_double(), Acid = col_double(), Color = col_double(), Texture = col_double(), Overall = col_double(), `Avg of Totals` = col_double(), `Total of Avg` = col_double() )
read_delim函数执行后会打印列名和数据类型信息,这些信息也可以使用head.read_delim函数获得。
readr包中的所有数据提取函数返回的是tibble,该数据类型是data.frame的扩展。最明显的变化是打印的元数据,比如行列数和每列的数据类型。tibble会适应屏幕大小打印相应条数的行列数据。
> tomato2
read_delim函数不仅仅读取速度比read.table函数快,而且不需要设置stringAsFactors参数为FALSE。read_csv、read_csv2和read_tsv函数是read.table函数分隔符分别为逗号(,)、分号(;)和tab(\t)的特殊情况。
注意,数据读取为tbl_df对象,它是tbl的扩展,也是data.frame的扩展。tbl是data.frame的特殊类型,它在dplyr包中定义。每列的数据类型显示在列名的下面,这是个很好的功能。
readr包有一些对read_delim函数封装(预置分隔符)的辅助函数,比如read_csv函数和read_tsv函数。
02 、fread函数
另一个读取大量数据的函数是data.table包的fread函数。第一个参数是读取的文件路径或者URL。header参数表示文件的第一行是列名,sep指定分隔符。该函数的stringAsFactors参数默认设为FALSE。
> library(data.table) > theUrl <- "http://www.jaredlander.com/data/TomatoFirst.csv" > tomato3 <- fread(input=theUrl, sep=',', header=TRUE)
这里也可以使用head函数查看前几行数据:
> head(tomato3)
该函数读取速度比read.table函数快,结果为data.table对象。data.table对象是data.frame的扩展,其是data.frame的优化。
read_delim或者fread函数读取文件都非常快,具体使用哪个函数取决于dplyr或者data.table包中哪个更适合数据处理。
关于作者:贾里德 P. 兰德(Jared P. Lander),资深数据专家,Lander Analytics公司创始人兼CEO,纽约开放统计编程聚会负责人,哥伦比亚大学统计学兼职教授。在数据管理、多层次模型、机器学习、广义线性模型、可视化、数据管理和统计计算等多个领域拥有丰富经验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02