作者:Jared P. Lander
来源:大数据DT(ID:hzdashuju)
编自:《R语言:实用数据分析和可视化技术》(原书第2版)
读取CSV文件最好的方法是使用read.table函数,许多人喜欢使用read.csv函数,该函数其实是封装的read.table函数,同时设置read.table函数的sep参数为逗号(",")。read.table函数返回的结果为data.frame。
read.table函数的第一个参数为文件所在路径,可以是本地文件,也可以是网页上的文件。本书主要是从网页读取文件。
任意CSV文件都可以读取,这里使用read.table函数读取一个简单的文件(地址如下):
http://www.jaredlander.com/data/TomatoFirst.csv
> theUrl <-"http://www.jaredlander.com/data/TomatoFirst.csv" > tomato <-read.table(file=theUrl, header=TRUE, sep=",")
利用head命令,我们可以看到下面的结果。
> head(tomato)
如前面所述,第一个参数是文件名(或字符型变量)。注意我们如何显式地使用参数名file、head和sep。函数的参数能够按位置顺序赋值,而不用显式指定参数名,但指定参数名是最佳实践。
第二个参数header,表示数据的第一行,即列名。第三个参数sed,表示数据的分隔符。可以设为“\t”(tab分隔符)或者“;”(分号分隔符),以读取不同类型的文件。
常用但不被熟知的参数是stringAsFactors。将该参数设为FALSE(默认是TRUE)可使字符所在列不被转换成factor列。这样既节省计算时间(当大数据集包含许多字符列,也意味着有许多唯一值),又能保留列为字符。
stringAsFactors参数也可以用在data.frame中。再次创建“Sport”列。
> x <- 10:1 > y <- -4:5 > q <- c("Hockey", "Football", "Baseball", "Curling", "Rugby", + "Lacrosse", "Basketball", "Tennis", "Cricket", "Soccer") > theDF <-data.frame(First=x, Second=y, Sport=q, stringsAsFac=FALSE) > theDF$Sport
read.table函数还有许多参数,最常用的是quote和colClasses参数,分别设置字符的包围符和每列的数据类型。
类似read.csv函数,也有其他用于read.table的封装函数,也有默认参数。它们主要的区别是sep和dec参数。详细情况见表6-1。
▲表6-1 读取大文本文件的函数及其默认参数
大文件使用read.table函数读取到内存比较慢,幸运的是有解决方案。读取大CSV文件和其他文本文件的两个主流的函数是read_delim和fread,前者在readr包中由Hadley Wickham实现,后者在data.table包中由Matt Dowle实现。read_delim和fread运行相当快,因为两者都不把字符数据自动转换成factor。
01、 read_delim函数
readr包提供读取文本文件的一系列函数。最常用的是read_delim函数,读取有分隔符的文件,比如CSV文件。该函数的第一个参数是读取的文件路径或者URL。col_names默认为TRUE,指定文件的第一行为列名。
> library(readr) > theUrl <- "http://www.jaredlander.com/data/TomatoFirst.csv" > tomato2 <- read_delim(file=theUrl, delim=',') Parsed with column specification: cols( Round = col_integer(), Tomato = col_character(), Price = col_double(), Source = col_character(), Sweet = col_double(), Acid = col_double(), Color = col_double(), Texture = col_double(), Overall = col_double(), `Avg of Totals` = col_double(), `Total of Avg` = col_double() )
read_delim函数执行后会打印列名和数据类型信息,这些信息也可以使用head.read_delim函数获得。
readr包中的所有数据提取函数返回的是tibble,该数据类型是data.frame的扩展。最明显的变化是打印的元数据,比如行列数和每列的数据类型。tibble会适应屏幕大小打印相应条数的行列数据。
> tomato2
read_delim函数不仅仅读取速度比read.table函数快,而且不需要设置stringAsFactors参数为FALSE。read_csv、read_csv2和read_tsv函数是read.table函数分隔符分别为逗号(,)、分号(;)和tab(\t)的特殊情况。
注意,数据读取为tbl_df对象,它是tbl的扩展,也是data.frame的扩展。tbl是data.frame的特殊类型,它在dplyr包中定义。每列的数据类型显示在列名的下面,这是个很好的功能。
readr包有一些对read_delim函数封装(预置分隔符)的辅助函数,比如read_csv函数和read_tsv函数。
02 、fread函数
另一个读取大量数据的函数是data.table包的fread函数。第一个参数是读取的文件路径或者URL。header参数表示文件的第一行是列名,sep指定分隔符。该函数的stringAsFactors参数默认设为FALSE。
> library(data.table) > theUrl <- "http://www.jaredlander.com/data/TomatoFirst.csv" > tomato3 <- fread(input=theUrl, sep=',', header=TRUE)
这里也可以使用head函数查看前几行数据:
> head(tomato3)
该函数读取速度比read.table函数快,结果为data.table对象。data.table对象是data.frame的扩展,其是data.frame的优化。
read_delim或者fread函数读取文件都非常快,具体使用哪个函数取决于dplyr或者data.table包中哪个更适合数据处理。
关于作者:贾里德 P. 兰德(Jared P. Lander),资深数据专家,Lander Analytics公司创始人兼CEO,纽约开放统计编程聚会负责人,哥伦比亚大学统计学兼职教授。在数据管理、多层次模型、机器学习、广义线性模型、可视化、数据管理和统计计算等多个领域拥有丰富经验。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16