大数据时代政府治理能力的提升_数据分析师
近年来,大数据如浪潮般席卷全球,并深度改变人们的生活、工作和思维方式。世界上越来越多的国家开始从战略层面认识大数据,在政府治理领域融入大数据思维和技术。在此背景下,我国政府也应顺应时代发展趋势,契合推进国家治理能力现代化的时代要求,充分利用大数据提升国家治理能力。
大数据时代政府治理能力面临的机遇和挑战
进入21世纪,世界上越来越多的国家开始重视和推进大数据的发展。英国2006年启动“数据权”运动,韩国2011年提出打造“首尔开放数据广场”,美国2012年启动“大数据研究和发展计划”,联合国2012年推出“数据脉动”计划,日本2013年正式公布以大数据为核心的新IT国家战略。我国也已开始推动大数据发展,政府、企业和科研院所正在进行多方位布局。对于政府治理而言,大数据时代在带来机遇的同时也充满挑战。
大数据为政府治理能力的提升带来了发展机遇。首先是为推动政府治理理念和模式的变化带来机遇。在政府治理领域,通过让海量、动态、多样的数据有效集成为有价值的信息资源,推动政府转变管理理念和治理模式,进而加快治理体系和治理能力现代化。其次是为推动政府治理决策精细化和科学化带来机遇。在大数据时代,互联网数据的价值随着海量积累而产生质变,能够对经济社会运行规律进行直观呈现,从而降低政府治理偏差概率,提高政府治理的精细化和科学化。再次是为推动政府治理提高效率和节约成本带来机遇。利用大数据,可以使政府治理所依据的数据资料更加全面,不同部门和机构之间的协调更加顺畅,进而有效提高工作效率,节约治理成本。
大数据对提升政府治理能力的重要性不言而喻,但在实际工作中具体运用大数据却任重而道远。现阶段,大数据在政府治理领域还未得到足够重视。我国政府部门目前几乎没有使用大数据技术,很多政府部门并未对大数据提升业务能力予以足够重视,大数据资源管理的思维尚未建立。大数据在政府治理中的技术运用尚在探索。随着我国信息化技术应用不断扩展,国家及企业层面产生了巨量大数据,但总体集成、掌握、整合、分析这些数据需要成熟的技术投入,目前如何利用大数据进行精细分析仍处于摸索阶段。大数据本身的管理还需要综合完善。如何管理大数据,我国各部门还缺乏统一标准,各部门的数据来源、数据架构、数据体系各自为政,不能有效整合,大大降低了数据的使用效率。
大数据时代政府治理能力提升策略
在政府治理理念中融入大数据思维。大数据的本质不在于“大”,而在于其蕴含的大数据思维,能够直观呈现数据背后的人类行为模式。运用大数据提升政府治理能力,需要把这种大数据思维融入政府治理理念,改变政府治理的理念向度、工作方式和决策思路。在大数据视域下,人们面对的是全体数据,这些数据呈现出混杂性的特征,数据之间不再是简单的因果关系,而是多重交合的相关关系。传统的政府治理理念往往是基于社会局部“现实”的抽象分析方法,依据一定方式选择样本数据,基于少部分人的需求来预判大多数人的行为模式和需求,这种治理理念必须要发生变革才能适应大数据时代的要求。这种变革就是把大数据思维的价值观和方法论融入政府治理理念中,将对基于稀缺数据的治理,转向覆盖更广泛、涉及更多人的大数据分析,从数据收集者转向数据分析者,从大数据中预测社会需求,预判社会问题,探索政府治理的多元、多层、多角度特征,提升政府治理能力。
把大数据技术运用于政府治理具体过程。大数据不仅是科学概念,更是一个实实在在的应用技术。在我国信息化水平最高的北上广等地,各级政府十分重视并大力推进大数据等现代技术在政府治理中的应用探索。但也应该看到,大数据的实际运用,需要较高的采集、存储、分析、整合、控制等技术,而目前政府治理过程中大数据技术的运用基本还处于初级阶段,亟待深入发展。要完善大数据基础设施建设。大数据基础设施是大数据技术应用的载体,决定了数据能否被有效收集、分析、挖掘和应用,因此,要加快完善大数据基础设施建设,为政府治理中大数据技术的应用提供基础和平台。要开展政府治理大数据技术应用示范工程。可以选择医疗、金融、食品安全等具有一定大数据基础的政府治理重点领域实施大数据技术应用示范工程,加强对政府治理其他领域大数据技术运用的带动和促进。此外,从技术角度而言,技术型企业更有大数据技术开发的经验,政府可与技术型企业合作,利用技术型企业的技术优势,共同开发政府治理领域的大数据运用技术。
整合大数据资源的数据标准和应用规则。大数据应用的前提,是海量数据信息的采集、更新、共享和融合。从政府层面来说,大数据可以整体利用原来分散在不同部门、行业、主体的数据,对其进行整合管理,为大数据的优化利用提供数据基础。但由于目前对这些数据资源本身的管理缺乏统一标准和应用规则,因此政府治理过程中数据资源的有效利用难以实现。要建立统一的元数据标准体系。建立统一的元数据标准体系,以及大数据生成、发展及发布的数据标准格式,便于数据的无缝隙统筹整合,使得原本散落在各部门的信息数据整合起来,打破信息孤岛状态,为政府治理建立基础。要制定完善的大数据应用规则。明确大数据采集和使用所涉及的包括数据隐私、准确性、可获取性、归档和保存等问题在内的应用规则,厘定信息使用权限和职责,确保数据依照规则规范使用。要重视大数据安全体系建设。大数据涉及政府数据公开,所以大数据的安全防护,需要有全新的模式,不仅要重视对大数据本身的安全保障,还要注重大数据平台的安全建设。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31