城市大数据分析的价值展望(1)_数据分析师
当前,我国互联网普及水平大幅提升,截至2013年6月底,网民数量达到5.91亿[1], 而物联网空间又时刻产生着大量的异构数据,例如,传感器及射频数据、移动设备数据等。地理、交通、经济与文化在赛伯空间中的映射意味着海量数据流转。而在城市管理层面上,大连接、大交互必然产生大数据。在信息化城市之上,通过数据存储、运算和分析,将数据深度挖掘、充分利用,能促进城市的发展以及与其他城市的联盟性合作。
在全球信息化的背景下,大数据已经上升为多个国家与地区的战略性计划。如在2012年3月,美国政府整合6个部门投资2亿美元启动“大数据研究和发展计划”。在该计划中,美国国家科学基金会提出,“要形成一个包括数学、统计基础和计算机算法的独特学科”。
眼下各国政府纷纷抢占大数据的高地,是因为数据和能源、材料一样,已正式成为一种重要战略性资源。政府拥有60%以上的社会信息资源,但由于数据资源整合不足、数据市场机制空缺等原因,制约着数据利用的社会化。如何利用大数据技术和理念,提高管理与决策的能力和质量,成为信息化条件下提高政府服务效能的重要内容。
中国科学院编制的“中国至2050年信息科技发展路线图”报告第六章“发展数据知识产业”明确指出:“数据知识产业将是我国国民经济增长中的重要力量,是推动产业结构升级的新兴经济业态。”我国自2012年以来兴起的智慧城市战略也非常重视数据的整合、管理、分析及利用工作,并在住建部发布的多个文件中均指出“要高度重视信息整合和共享协同,抓好城市公共信息平台和公共基础数据库建设,提升各应用系统效能”。可见,对公共数据的管理与利用是智慧城市建设的核心目标之一。
当前大数据的研究针对商业智能方面较多,在城市管理层面上,虽许多城市在进行数据中心建设,但系统化的支持理论较少。本文在分析我国信息化现状、智慧城市建设进程的基础上,充分考虑大数据的应用潜能与当前技术与政策上的缺憾,明确了城市级大数据分析的意义,并总结出所需保障及应用体系,如图1所示。
图1 城市大数据分析保障及应用体系
2 城市大数据分析的效能意义
2.1 城市运行过程监督
城市运行过程监督围绕城市行政公共服务开展,重点针对地区重大工程、重大事件和重大活动落地实施过程中的需求分析和效果监测工作,覆盖政府网站群、搜索引擎、微博、博客、论坛等互联网信息传播主渠道的互联网用户舆论焦点数据和话题信息,评估各城市项目实施的市民需求情况和市民反馈情况,为交通、旅游、医疗、农业等部门提供政务互联网大数据分析与决策支持。
2.2 改善组织结构绩效
改善组织结构包括构建高效型政府、促进经济结构调整、实现产业结构优化等。通过大量的数据点及数据流通性分析,发现组织结构的瓶颈,从而改进业务流程与执行效率。
2.3 促进产业发展
促进产业发展包括在交通管理、金融服务、医疗卫生、生产制造、商业零售、个人数字生活等方面实现数据、信息的价值。例如,通过大数据分析帮助游客了解地方文化特色、进行个性化路线规划、推荐景点及产品等应用,可满足游客日益增长的信息量需求,促进旅游产业的发展。
2.4 支持运行监测与预警
通过大数据分析预测、预警群体事件和焦点演变,顺应城市事件管理从“事后查看”到“事前预警”的需求变化。大数据早已在监测与预报,尤其是发现异常数据方面显示出巨大能量。如2009年甲型H1N1流感暴发时,“谷歌流感趋势”系统即为大数据分析预测的经典应用。它通过分析大量用户的搜索记录,比如“咳嗽”、“发烧”等特定词条,预测美国冬季流感传播趋势。谷歌甚至能比官方机构提前一两周预测流感暴发,预测结果与官方公布数据的相关性高达97%。
2.5 提高地方知名度
若要提高地方知名度应深度挖掘城市民族文化与地域特点,将城市视为国内外文化与贸易交流的节点。目前国内许多城市急需拓展信息视角,开辟外界对自己的认知窗口,进一步拓展地方知名度。如此,一方面给城市硬实力的提升注入了鲜活的力量,另一方面也让更多人了解城市、树立地方品牌,助力城市软实力的提升。
数据分析咨询请扫描二维码
数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20