大数据 转型并非万能_数据分析师
大数据转型并不是万能的,除非企业能成功应对转型过程中的管理挑战。以下五个方面在这一过程中尤为重要。
领导力 那些在大数据时代获得成功的企业,并不是简单地拥有更多或者更好的数据,而是因为他们的领导层懂得设计清晰的目标,知道自己定义的成功究竟是什么,并且找对了问题。大数据的力量并不会抹杀对远见与人性化洞察的需求。相反,我们仍然需要这种领导者——他们能抓住某个绝好的机会、懂得如何开拓市场、用自己的创意提供那些相当新奇的产品和服务,并且巧舌如簧地勾勒出一幅激动人心的前景,说服下属们激情澎湃地为此拼命工作,最终成功赢得顾客。未来十年获得成功的企业,其领导者必然具备以上特质,与此同时推进了公司决策机制的转型。
人才力 随着数据越来越廉价,实现大数据应用的相关技术和人才也变得越来越昂贵。其中最紧迫的就是对数据科学家和相关专业人士的需求,因为需要他们处理海量的信息。统计学很重要,但是传统的统计学课程几乎不传授如何运用大数据的技能。尤其需要的能力是将海量数据集清理并系统化,因为各种类型的数据很少是以规整的形态出现的。视觉化工具和技术的价值也将因此突显。随着数据科学家的涌现,新一代的电脑工程师必须能够处理海量数据集。而设计数据试验的技能,则会非常有助于弥补数据呈现的复杂关系与因果之间的鸿沟。除此之外,那些最优秀的数据科学家还需要掌握商业语言,帮助高管把公司面临的挑战变为大数据可以解决的形式。毫无疑问,这类人才炙手可热,很难找到。
技术力 处理海量、高速率、多样化的大数据工具,近年来获得了长足的改进。整体而言,这些技术已经不再贵得离谱,而且大部分软件都是开源的。Hadoop,这个目前最通用的平台,就整合了实体硬件和开源软件。它接收涌入的数据流并将其分配至很便宜的存储盘,同时它也提供分析数据的工具。尽管如此,这些技术需要的一整套技能对大部分企业的IT
部门来说都是全新的,他们需要努力将公司内外所有相关的数据都整合起来。只有技术远远不够,但技术是整个大数据战略中不可或缺的部分。
决策力 一家高效的公司通常把信息和相关的决策权统一在一起。而在大数据时代,信息的产生与流通,以及所需人才都不再是以往那样了。精明的领导者会创造一种更灵活的组织形式,尽量避免“自主研发综合征”,同时强化跨部门合作:收集信息的人要提供正确的数据给分析数据和理解问题的人,同时,他们要和掌握相关技术、能够有效解决问题的人并肩工作。
文化力 大数据驱动的公司要问自己的第一个问题,不是“我们怎么想?”而应该是“我们知道什么?”这要求企业不能再跟着感觉走。很多企业还必须改掉一个坏习惯:名不副实的大数据驱动。我们发现很多这样的企业,最常见的表现是,高管们明明还是按传统方式做决定——以HiPPO,那些高薪人士的意见为主,却拿出一份香艳的数据报告支撑自己的决定是多么英明。其实,那不过是分配下属四处寻找的专为这个决定做辩护的一堆数字。
毫无疑问,成功的路上荆棘密布。数据科学家不够多;技术不只新,甚至新奇;把各种关联当作因果关系,由数据得到误导性的模式;文化转型的挑战更是艰巨,比如,对隐私的关切已经越来越突出。但是,大数据在技术和商业领域的卓越表现势不可挡。
证据一目了然:大数据驱动下的决策更高明。高管们要么拥抱这一现实,要么卷铺盖走人。在各个领域中,企业只有找到将数据科学与传统技能完美结合的方式,才能打败对手。我们不能说,所有的赢家都会将大数据用于其决策制定。但数据告诉我们,这样确实胜算最大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31