在目前的国内互联网行业内,跟风之气很重,如此“高大上”的大数据分析怎么能够逃得过各类创业者,风师和行业内人士的法眼呢?因此无数的企业都开始宣称,我们要做大数据分析,大数据分析多么有用多么好,要是不做都不好意思和人打招呼。但是实际上,并不是所有企业和所有的商业模式都适合应用大数据分析,在本文中,我们主要会针对大数据的成本问题来进行探讨。
大数据理念决定的两大问题
大数据具有4V理念:volume、variety、velocity、value,前三者指数据的容量、类型和传输速度,后者指在前三者基础上实现收集、存储、管理、分析而产生的数据价值。如此问题就来了,如何在前三者基础上实现收集、存储、管理、分析进而使数据产生价值?如何在这个收集、存储、管理、分析的过程中使其成本与所产生的价值成正比?
如果移动医疗企业想要涉足大数据,就必须解决下面两个问题:
第一,大数据项目需要耗费多少成本;尤其对创业企业的运营过程中,控制成本是一个重点。
第二,如何进行大数据的分析。因为利用大数据的价值需要足够的分析能力,需要知道其可能在移动医疗的哪些方面发挥作用并创造价值。
技术成本过高
对于移动医疗大数据而言,成本应该包含两个方面——技术成本和人力资源成本。这两个成本分别蕴含在大数据的存储和分析中。但是数据分析能力的高低,才决定了大数据的真正价值。可以说,如果没有数据分析,“大数据”只是一堆IT库存,存储成本极高而收益为负。
第一章中Dr.2曾经说过,目前国内大多数移动医疗初创企业,以所谓的大数据结尾,都是在耍流氓而已,因为目前他们仍然停留在对大量数据的收集,整理,储存和简单的分析等初级阶段。能够对大数据进行进一步研究、分析和运用的企业少之又少,因为成本太高了!想要从无数的垃圾中搜寻一块金子,首先你需要一个巨大的垃圾存储地,其次还需要耗费很多人力物力来进行搜寻工作,存储和搜寻本身所耗费的成本也许已经超过了金子本身的价值。
大数据并非是一个简单的项目,首先就像很多IT项目中所包含的那样,需要如下基础:软件许可和支持、硬件资源、高通量的带宽、存储服务器、完善的组织架构、人员专业技能和服务的培训、客服团队等。
不过,大数据分析远远不止如此,很多IT项目在完成后,只需要保留少量人员后续跟进,或者安排机动人员偶尔进行维护即可,但是大数据分析却是一个持续投入,不能间断,越干越多的工作。因为其本质就是对数据进行不停的收集,并进行持续的分析,如果在某个时间段使用数据库中的某一段来分析,那么它本质上就只是小数据而已。所以真实大数据分析的支出和耗费都将会是巨大的,移动医疗的初创企业无法承受,那又何来商业模式呢?
人力资源成本也过高
从大数据的硬件支出管理方面来看,最初需要的存储需求可能在能力范围之内,但是随着对数据速度要求的提高,那所需要的硬件需求可能会成百上千倍地增加。届时,你需要面对的是大量的硬件支出,以及额外的人员和技术资源用以管理整体环境。如果需要对数据流进行实时分析,要检测假象或有异常的地方,则需要其他的商业工具或数据可视化工具来帮助实现。这又是一笔巨大的成本支出。即使租用第三方服务,如阿里云或亚马逊云,其成本也相差无几。
由于大数据分析的规模庞大,移动医疗的小企业即使已经砸锅卖铁开始做了,后续的持续投入也会让大部分人上西天,或者只能造假,人为干预!比如很多可穿戴公司宣称的大数据商业模式,试图收集并分析所有背有传感器的患者的数据,即使这些数据是由机器生成或者已经保存在系统中,但由于这些数据类型、数量和增长速率都各不相同,而且每个人的数据都需要长期保存,按大数据分析的要求,即使是最为细节性的数据也不能随意丢弃。因此随着时间的积累,数据量就会越来越多,直到崩溃。
再者,数据库如何保持稳定和可扩展性,如何不被黑客攻击,如何保护数据来源(如患者)的隐私,这些都非三言两语说说那么简单。
据麦肯锡咨询公司公布的一份报告显示,到2018年,美国在“深度分析人才”方面将面临14万至19万的人才缺口;在“能够分析数据帮助公司做出商业决策”方面将面临150万的人才缺口。大数据分析职位相关的技能主要包括数学、统计学、数据分析、商业分析和自然语言处理。尽管对这些技能还没有达成一致,但是数据科学家、数据架构师等职位是大数据项目所必须具备的。
黎叔曾语重心长地说道:“二十一世纪什么最贵?人才!”所以对于移动医疗行业的大数据项目而言,专业性的数据分析和数据挖掘人才,很难负担的起如此高的人力资源成本。因为大数据的管理和分析对于参与者的收集、整理、统计、概率、数学、计算机、业务理解等方面的能力要求甚高。尽管“能力是可以培养的”,但是这些都不会从天上掉下来。而且移动医疗行业与普通行业不同,既要具有深度的医疗行业背景,又要具备IT、数学、统计学、管理法等的技能,这种人才真是非常难找啊!
简单把以上所述归纳如下表:
理念很好但落地很难
无论移动医疗初创企业是想把大数据项目外包,还是想自力更生独立自主来做,都需要考虑以上这些成本问题,听起来似乎只有“三个字”,但实际操作就另当别论了。现在各位读者知道Dr.2为什么说一些人在耍流氓了吧,很多人真的只是在忽悠概念,连如何真正落地都没有想过。
但故事并没有完,为什么说很多的移动医疗大数据是伪命题呢?这是因为大数据经常存在无意识的偷换概念、条件变异及本身存伪的情况。
在我们医疗行业,两个特征是很重要的——敏感性和特异性。敏感性是指患者的临床表现方面,一般不会被遗漏。而特异性是指一种疾病所具有的特征,在临床上,主要是被用来做诊断鉴别的,目的是用以排除易混淆疾病,是确诊某种疾病的金标准。特异性是敏感性的充分必要条件,而敏感性只是特异性的充分条件而非必要条件。具有足够的敏感性不一定就具有特异性,具有足够的特异性也不一定就具有敏感性。
即使辛辛苦苦真的搜集来了数据,可能却是毫无用处,这就是因为医疗中独特的特异性与敏感性问题、杂波干扰的问题、一票否决的问题和安全性第一的问题,这些我们将在后面仔细讨论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31