大数据时代运营商需关注四大课题_数据分析师
随着网业分离的加速实施以及OTT厂商和虚拟运营商的逐渐崛起,电信运营商正逐步沦为“流量管道”,运营商的语音、短信等传统业务受到前所未有的冲击。
有专家认为,改变当前专注于粗放式的用户规模增长,寻找更加精细化的盈利新方式来服务客户,挖掘新兴业务的市场价值,以及降低IT系统建设成本和培育内部系统自生能力是运营商在发展转型阶段的重要课题。
支撑精细化运营,全面提升传统电信服务水平
据悉,目前我国的移动业务渗透率已经接近90%,依靠新增用户已经无法长期支撑运营商收入的稳步增长。虽然4G建设力度增大使得中国移动和中国联通的新增移动用户数出现正增长,但是中国电信上半年的新增移动用户数连续数月出现负增长。同时国资委向三大运营商下发通知,要求在未来三年内,连续每年降低20%的营销费用。这样使得运营商的终端补贴策略被迫进行重大调整,放缓用户增长速度。利用数据资源对存量用户进行价值深挖、提升ARPU,降低经营成本,调整收益结构,才是运营商进行用户维系、价值提升的利器。
存量用户维系的前提在于对用户群体的准确分类。以往用户细分的数据来源是业务支撑系统(Business Support System, BSS)的用户消费习惯和消费特征数据。这些数据可以支撑处于成长型或者稳定型的用户维系工作,但当用户进入到波动或者离网阶段,营销侧数据无法展示深层次的用户业务数据。在大数据挖掘技术的带动下,运营商通过整合用户访问记录、位置信息、终端信息、信令监控等网络侧数据,强化营销侧数据和网络侧数据的关联关系。数据分析部门通过构建离网用户数据模型,预判潜在离网用户,加强对VAP (Very Annoying Person)用户的预防式管理,通过主动关怀降低用户离网预期。
“在面对成长型或者稳定型的用户时,运营商同样可通过强化网络侧数据挖掘以对用户价值进行深层次刻画,根据分析结果对用户进行正确的聚类分群以寻找潜在高价值客户。对不同分类的用户制定有针对性的营销计划,为不同用户群体提供其喜爱的产品组合,以实现分客户群的精准营销。”赛迪顾问通信产业研究中心分析师杨光建议。
加快“去电信化”进程,挖掘新兴业务的市场价值
当前在互联网浪潮的冲击下,电信运营商已经认识到基础电信业务市场将持续低迷,未来业务的增长点主要由增值电信业务带来,“去电信化”的发展思路成为运营商转型调整的主要手段。但是“去电信化”并不意味着“互联网化”,运营商在基础网络上的优势意味着未来发展支柱依然是为其带来丰厚用户群体的管道。即使在网业分离的趋势背景下,运营商将继续以管道为主,依托管道中的流量信息,发展增值业务,延伸产业链条向个性化定制化发展,向信息服务领域延伸。
大数据正是迎合当今发展态势,成为加快运营商“去电信化”的利器之一。以集客用户为例,传统上的运营商集客业务大致分为三类,即基础业务、行业应用和行业解决方案。在互联网时代,集客用户的营销策略制定很大程度上取决于终端用户信息的分析程度。但由于集客用户只专注所在行业领域,缺乏宏观数据视角。因此,运营商在网络资源方面的优势可以为集客用户提供更加完善的IT解决方案。通过定制化报表分析等手段,指出用户发展现状和未来发展趋势,支撑用户进行科学决策,同时为运营商预埋商业机会,进一步推出定制化服务产品,实现精细化运营。
打破烟囱式系统架构,降低IT系统建设成本
据了解,经过多年的建设,电信运营商已经建成了完善的IT支撑系统,形成了从集团公司到各省级公司的两级支撑模式。在支撑系统发展之初,由于业务和数据量较少,运营商普遍采用烟囱式架构。目前虽然各系统之间相互独立,各自管理,但却造成了大量的“数据孤岛”,而且由于数据模型和系统入口缺乏统一规划,软硬件资源共享度低。
随着大数据的到来,系统数据共享和综合应用将成为大数据产业链的发展基础。运营商的IT支撑系统也面临向集中化、标准化和服务化的方向发展。整合BSS系统、运营支撑系统(Operation Support System, OSS)等多系统数据,构建数据分散采集、独立存储、集中应用的IT系统,实现支撑系统的集中化和数据模型的标准化,推动集约化的运维体系和端到端服务体系的建立,将有效促进网络质量和运行维护效率提升。
推动运维部门职能转变,培育内部系统自生能力
在大数据概念来临之前,运营商的经营决策通常依靠BSS系统支撑。BSS系统内的用户营账信息、计费数据等内容能为决策者提供决策分析支持。大数据的到来让运营商意识到网络侧数据将成为价值蓝海,OSS系统内的网络运行和监控数据隐含着业务质量与用户感知的真实情况。
对此,建议运维部门可通过对现有组织、流程、指标和系统多维度的优化调整,建立面向用户感知的运维综合评估体系。运维部门配合市场部门将用户业务质量监控纳入日常工作,将客户服务和市场支撑意识真正融入运维工作,支撑市场部门营销活动。如此,运维部门将从被动响应走向主动运维,从而实现运维部门从网络运营中心(Network Operation Center, NOC)向业务运营中心(Service Operation Center, SOC)的转型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31